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Abstract. Asset allocation strategy is important to manage assets effectively. In recent years, risk parity strategy has become 

attractive to academics and practitioners in place of traditional mean-variance approach. Risk parity strategy determines 

the individual allocation for asset classes in order to equalize their contributions to overall portfolio risk, it implies risk 

parity strategy is sensitive to the choice of asset’s universe and ignores common risks among assets. In this regard, 

Roncalli and Weisang (2016) proposed the use of “risk factors” instead of asset classes. This approach aims at “true 

diversification” by allocating portfolio risk to each factor. In this paper, we construct the factor-based risk parity portfolio 

with macroeconomic factors such as stock, interest rate and inflation following Roncalli and Weisang (2016) and Qian 

(2012). We use global bonds (government, aggregate corporate and high-yield), stocks (developed and emerging country) 

and REIT data. We find this approach can reduce portfolio risk which cannot be considered in the conventional asset-

based risk parity portfolio. However, we also find this method has some shortcomings. The first point is the difficulty of 

obtaining a unique solution from an optimization problem. The second point is stability, the relationship between assets 

and factors is changing dynamically in time series, optimal portfolio weights are also changing dynamically.  Therefore, 

we construct the portfolio in consideration of not only factor diversification but also asset diversification.  We propose 

a new risk parity method which balances between asset and factor diversification. We implement eighteen years backtest, 

we find our method decreases risks which represent standard deviation and downside risk, and it has less turnover and 

increases stability. We show our new method reduces risk and has practical advantages. 
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1. INTRODUCTION 
 

The asset allocation strategy is extremely important to 

manage assets effectively. The standard asset allocation model 

is the mean-variance model by Markovitz. However, this 

model is extremely sensitive to the change in parameters. From 

2000, many researchers and practitioners have shown interests 

in the risk parity portfolio instead of the traditional mean-

variance model. The portfolio equalizes each asset’s 

contribution to overall portfolio risk. It seeks portfolio is not 

affected by specific asset variance and aims at the stable asset 

management.  

While explicitly pursuing diversification, these 

methodologies may lead to solutions with hidden risk 

concentration. The optimal asset-based risk parity portfolio 

depends on which assets are included in the portfolio. 

In this regard, Roncalli and Weisang (2016) proposed the 

use of “risk factors” instead of asset classes for the risk parity 

portfolio. It is based on the idea that asset class returns and 

variability are driven by common risk factors, and aims at “true 

diversification” by allocating portfolio risk to each factor. 

However, we find this method has some shortcomings. The 

first point is the difficulty of obtaining a unique solution from 

an optimization problem. The second point is stability, the 

relationship between assets and factors is changing 

dynamically in time series, optimal portfolio weights are also 

changing dynamically.  

Therefore, we construct the portfolio in consideration of 

not only factor diversification but also asset diversification. We 

propose a new risk parity method which balances between 

asset and factor diversification. Our methodology can 

explicitly control both factor and asset diversification. It 

expects the optimal portfolio weights are stable and have many 

practical advantages. We consider investing in the global 

financial indexes and clarify these characteristics. 

Our paper is organized as follows. In Section 2, we 

explain the basic risk parity portfolio methodology. In Section 

3, we explain the factor-based risk parity portfolio and its 

shortcomings. We propose a new risk parity method. In Section 

4, we derive the portfolio allocation using real financial data 



and discuss its characteristics. In Section 5, we implement 

eighteen years backtest and evaluate the performance of our 

new method. We find our method has many practical 

advantages. 

 

2. RISK PARITY PORTFOLIO 
 

We define each asset’s risk contribution. The most 

commonly used definition is based on Euler’s homogeneous 

function theorem. It is defined as follows, 

𝑅𝐶(𝒜𝑖) = 𝑥𝑖
𝜕𝑅(𝒙)

𝜕𝑥𝑖
 (1) 

where 𝑅(𝑥) is the portfolio risk, 𝑥𝑖 is the portfolio weight to 

asset 𝑖, and 𝒜𝑖 is the set to asset 𝑖.  

When we use the standard deviation as a risk measure 

(𝑅(𝒙) = 𝜎𝑃 = √𝒙
⊤𝛴𝒙), Equation (1) can be replaced as, 

𝑅𝐶(𝒜𝑖) = 𝑥𝑖
(𝛴𝒙)𝑖

√𝒙⊤𝛴𝒙
 (2) 

where Σ is the covariance matrix of asset returns. 

Then, we satisfy the following equation. 

𝑅(𝒙) =∑  𝑅𝐶(𝒜𝑖)

𝑁

𝑖=1

 (3) 

Equation (3) shows that the total portfolio risk equals the sum 

of each asset risk contribution by Euler’s homogeneous 

function theorem. The risk parity strategy equalizes its risk 

contribution across all assets and the portfolio risk can be 

equally diversified to each asset. 

Roncalli (2013) said this risk parity portfolio’s advantages are 

1. It defines a portfolio that is well diversified in terms 

of risk and weights. 

2. It does not necessary any expected returns estimation. 

3. It is less sensitive to small changes in the covariance 

matrix than the mean-variance portfolio. 

 

3. FACTOR-BASED RISK PARITY PORTFOLIO 
 

The asset-based risk parity portfolio equalized its risk 

contributions across all assets. It depends on the portfolio 

asset’s universe and leads to hidden risk concentration. Many 

asset classes load on the same risk factor (e.g. equity risk), it 

generates an asset-based risk parity portfolio with very 

concentrated risk factor exposure. Due to this problem, 

Roncalli and Weisang (2016) show the risk parity portfolio 

with risk factors instead of assets. It means that each asset class 

can have embedded loadings on several factors and can share 

some of them with one or more other asset classes that are 

apparently distinct. 

 

 

3.1. Formulation 
 

We assume the following linear factor model, 

𝑹 = 𝑨𝑭 + 𝜺 (4) 

where 𝑹 is the vector of asset returns, F is the vector of factor 

returns and A is the ‘loadings’ matrix.  

We satisfy, 

𝒚 = 𝑨⊤𝒙 (5) 

where 𝒚 is the vector of portfolio’s risk factors exposures. 

Following these relationships, the risk contribution to risk 

factor 𝑗 is, 

𝑅𝐶(ℱ𝑗) = 𝑦𝑗
𝜕𝑅(𝒙)

𝜕𝑦𝑗
= (𝑨⊤𝒙)𝑗 ⋅ (𝑨

+
𝜕𝑅(𝑥)

𝜕𝒙⊤
)
𝑗

 (6) 

where ℱ𝑗 is the set to factor 𝑗 and 𝐴+ is the Moore-Penrose 

inverse of 𝐴.  When we use the standard deviation as a risk 

measure, Equation (6) can be replaced as, 

𝑅𝐶(ℱ𝑗) = (𝐴
⊤𝒙)𝑗 ⋅ (𝐴

+
𝛴𝒙

√𝒙⊤𝛴𝒙
)
𝑗

 (7) 

Then, we solve an optimization problem that the 

contributions to each factor are the same for all factors. The 

first constraint expresses the sum of portfolio weights is 1. The 

second constraint expresses long-only portfolio constructed. 

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 ∑(
𝑅𝐶(ℱ𝑗)

𝜎𝑃
−
1

𝑀
)

2𝑀

𝑗=1

 

(8) 
𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 ∑𝑥𝑖

𝑁

𝑖=1

= 1 

 0 ≤ 𝑥𝑖 ≤ 1 

However, this optimization problem is not convex around 

the minimum optimal value, therefore it is difficult to obtain a 

unique solution. Figure 1 shows the objective value of Problem 

(8). We can find there are feasible regions of portfolio weights 

where risk contributions are allocated equally to all factors. 

  

Figure 1: Objective function value 

 

  



3.2. New risk parity method 
 

In this paper, we propose a new risk parity method which 

balances between asset and factor diversification as follows. 

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 

𝜆∑(
𝑅𝐶(ℱ𝑗)

𝜎𝑃
−
1

𝑀
)

2𝑀

𝑗=1

 

+(1 − 𝜆)∑(
𝑅𝐶(𝒜𝑖)

𝜎𝑃
−
1

𝑁
)

2𝑁

𝑖=1

 
(9) 

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 ∑𝑥𝑖

𝑁

𝑖=1

= 1 

 0 ≤ 𝑥𝑖 ≤ 1 

We construct the portfolio in consideration of not only factor 

diversification but also asset diversification. Diversification in 

asset includes the difference in market participants and 

differences by country. In Equation (9), λ = 0  shows the 

asset-based risk parity portfolio and λ = 1 shows the factor-

based risk parity portfolio. In our model, we can control both 

asset and factor diversification by adjusting λ. 
 

3.3. Portfolio Diversification Index (PDI) 
Rudin and Morgan (2006) proposed an index which 

measures the number of unique investments in a portfolio. It is 

useful to measure diversification benefits across the universe. 

PDI is defined as follows, 

𝑃𝐷𝐼 = 2 ⋅∑𝑖 ⋅ 𝑅𝑆𝑖

𝑁

𝑖=1

− 1, 𝑅𝑆𝑖 =
Λ𝑖

∑ Λ𝑗
𝑁
𝑗=1  

 (10) 

where Λ𝑖  is the eigenvalue associated with the 𝑖-th principal 

component and 𝑅𝑆𝑖  is the relative strength of the 𝑖 -th 

principal component. When 𝑃𝐷𝐼 = 1, it indicates 

diversification is effectively impossible.  On the other hand, 

when PDI = 𝑁,  it indicates all assets are perfectly 

uncorrelated. PDI shows diversification potential of a set of the 

universe. 

We use the PDI as a weight between asset and factor 

diversification. We minimize the risk concentration of assets 

and factors which are weighted by the potential of 

diversification of each universe. 

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 

𝑃𝐷𝐼(ℱ)

𝑀
∑(

𝑅𝐶(ℱ𝑗)

𝜎𝑃
−
1

𝑀
)

2𝑀

𝑗=1

+
𝑃𝐷𝐼(𝒜)

𝑁
∑(

𝑅𝐶(𝒜𝑖)

𝜎𝑃
−
1

𝑁
)

2𝑁

𝑖=1

 (11) 

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 ∑𝑥𝑖

𝑁

𝑖=1

= 1, 0 ≤ 𝑥𝑖 ≤ 1 

 

Figure 2: Asset and factor PDIs 

 

     Figure 2 shows the standardized PDI estimated in 60 

months.  The factor PDI is higher than the asset PDI because 

the correlations among factor returns are lower than those of 

asset returns. When the financial crisis occurred in 2008, the 

correlations of factor returns have increased and the factor PDI 

has declined. 

 

4. BASIC ANALYSIS 
 

We conduct the basic analysis. We use the following index 

returns of seven asset classes and three factors. 

Asset return: 

(1) Developed country stock: MSCI World 

(2) Emerging country stock: MSCI Emerging Market 

(3) Government bond: Bloomberg Global Treasury 

(4) Corporate bond: Bloomberg Global Aggregate Corporate 

(5) High-Yield: Bloomberg Global High-Yield 

(6) Commodity: Bloomberg commodity 

(7) REIT: S&P Global REIT Index 

Period: October 2000 – April 2018 

Currency: USD 

 

Factor return: 

Qian (2013) said that Risk Parity portfolio should have a 

balanced risk contribution from three sources: (1) equity risk; 

(2) interest rate risk; (3) inflation risk. In reference to 

Qian(2013), we use these three factors to construct the factor-

based risk parity portfolio. 

(1) Equity: MSCI ACWI 

(2) Interest rate: Bloomberg Barclays Global-Aggregate minus 

inflation risk factor return 

(3) Inflation risk: Bloomberg Barclays global Inflation-Linked 

minus Bloomberg Barclays Global Treasury 

 

 

 



Table 1. Result of Basic Analysis 

 

4.1. Result 
 

Using these data, we get the following loadings matrix A. 

A =

(

 
 
 
 

0.98 −0.04 −0.07
1.19 0.38 0.66
−0.02 1.18 1.01
0.07 0.95 1.27
0.37 0.50 1.11
0.33 0.76 1.53
0.71 0.84 1.30 )

 
 
 
 

 

Table 1 shows optimal portfolio weight, risk contribution to 

asset and risk contribution to factor from the factor-based risk 

parity portfolio to each λ.  

At λ = 0, which is the asset-based risk parity portfolio, 

the risk contributions to assets are perfectly equal, but risk 

contributions to factors show the risk is concentrated. The 

proportions of equity risk and inflation risk are large to the total 

risk. On the other hand, at λ = 1, which is the factor-based 

risk parity portfolio, the risk contributions to factors are 

perfectly equal, but the portfolio allocations of government 

bond, cooperate bond and REIT are large. Moreover, we find 

an optimal solution is unstably derived at λ = 1 because it is 

dependent on the initial value.  

The loadings matrix A shows that commodity has a very 

large exposure to inflation risk. As λ increases, the portfolio 

weight to commodity decreases to lower the risk contribution 

of inflation risk. In contrast, government bond has relatively 

high exposure to interest rate risk. As λ  increases, the 

portfolio weight to government bond increases to raise the risk 

contribution to interest rate risk.  

The asset PDI   is 4.50 and the factor PDI is 2.42. It 

corresponds to λ = 0.65(= 4.50/(4.50 + 2.42))in Equation 

(9). The risk contribution can be well-balanced between assets 

and factors in the PDI strategy. 

We find that the asset with excessive exposure to risk 

factor tends to be underweighted. The PDI strategy gives well-

balanced portfolio weight in consideration of risk contribution 

between assets and factors. 

 

5. BACKTEST 
 

It is well-known that the risk of financial asset return and 

their correlations are time-varying.  It causes the different 

optimal factor-based risk parity portfolio over time. We 

implement the backtest under the following setting. Suppose 

we invest seven assets, as well as the basic analysis in Section 

4. The portfolio is rebalanced on the first day of each month, 

and the loadings matrix and risk contributions are estimated 

using a rolling window of sixty months.  

Table 2 reports out-of-sample average returns and standard 

 

Portfolio weight (= 𝑥𝑖) 

𝛌  0 0.25 0.5 0.75 1 PDI 

Developed Stock 9.88% 8.53% 7.22% 6.13% 5.05% 6.96% 

Emerging Stock 6.56% 5.71% 5.06% 4.56% 2.11% 4.94% 

Government Bond 28.54% 36.35% 39.25% 40.58% 42.98% 39.63% 

Cooperate Bond 21.84% 23.76% 25.53% 26.67% 24.22% 25.83% 

High-Yield Bond 14.20% 11.99% 11.43% 11.29% 4.74% 11.38% 

Commodity 10.76% 5.67% 3.54% 2.82% 4.39% 3.31% 

REIT 8.21% 8.00% 7.96% 7.95% 16.51% 7.96% 

Percent risk contribution to asset (= 𝑅𝐶(𝒜𝑖)/𝜎𝑃) 

𝛌  0 0.25 0.5 0.75 1 PDI 

Developed Stock 14.29% 12.63% 10.63% 8.91% 6.74% 10.21% 

Emerging Stock 14.29% 12.75% 11.26% 10.06% 4.12% 10.96% 

Government Bond 14.29% 22.09% 26.10% 28.37% 28.71% 26.71% 

Cooperate Bond 14.29% 17.56% 19.97% 21.52% 18.20% 20.38% 

High-Yield Bond 14.29% 12.65% 12.25% 12.16% 4.58% 12.21% 

Commodity 14.29% 7.36% 4.51% 3.57% 5.18% 4.20% 

REIT 14.29% 14.96% 15.28% 15.42% 32.47% 15.32% 

Percent risk contribution to factor (= 𝑅𝐶(ℱ𝑗)/𝜎𝑃) 

𝛌  0 0.25 0.5 0.75 1 PDI 

Equity risk 51.06% 44.70% 39.95% 36.53% 33.33% 39.09% 

Interest rate risk 3.29% 17.94% 26.50% 31.07% 33.33% 27.76% 

Inflation risk 47.06% 39.03% 35.26% 34.11% 33.33% 34.86% 



Table 2. Result of backtest 

 

 
Figure 3: Portfolio weight and risk contributions to assets and factors 

 

deviations on the portfolios. As λ  increases, the standard 

deviation of the portfolio decreases. We evaluate investment 

efficiency between return and risk using Sharpe ratio, or 

𝑆𝑅 =
𝑟�̅� − 𝑟𝑓

𝜎𝑃
 (12) 

where 𝑟�̅� is a portfolio return and 𝑟𝑓 is a risk free rate. 

We use one month JPY LIBOR as risk free rate. 

We find the PDI strategy has the highest Sharpe ratio. This 

result implies the PDI strategy gives portfolio weights so that 

it can capture the potential of asset and factor diversification 

appropriately. 

Table 2 also reports down-side risks. First, VaR (Value at  

Risk) represents the potential maximum loss on a given 

confidence level α (α = 0.95 in this paper). 

𝑉𝑎𝑅(𝛼) = min
1−𝛼

{𝑉: 𝑃[−𝑟𝑃 > 𝑉] ≤ (1 − 𝛼)} (13) 

where 𝑟𝑃 is a portfolio return.  Second, CVaR (Conditional 

VaR) is defined as the average loss beyond the VaR. 

𝐶𝑉𝑎𝑅(𝛼) = 𝐸[−𝑟𝑃  | − 𝑟𝑃 ≥ 𝑉𝑎𝑅(𝛼)] (14) 

Then, CVaR ratio defined as 

𝐶𝑉𝑎𝑅 𝑟𝑎𝑡𝑖𝑜(𝛼) =
𝑟�̅� − 𝑟𝑓

𝐶𝑉𝑎𝑅(𝛼)
 (15) 

Finally, we employ maximum drawdown (MDD) which is the 

maximum loss from a peak to a trough of a portfolio, before a 

𝛌  0 0.25 0.5 0.75 1 PDI 

Annual average return 3.72% 3.85% 3.97% 3.89% 3.41% 3.96% 

Annual standard deviation 8.96% 8.41% 8.09% 7.91% 8.11% 8.03% 

95%-VaR 3.81% 3.58% 3.42% 3.22% 3.27% 3.36% 

95%-CVaR 6.17% 5.73% 5.49% 5.39% 5.61% 5.46% 

Sharpe ratio 0.3917 0.4340 0.4654 0.4666 0.3950 0.4679 

CVaR ratio 0.5687 0.6369 0.6856 0.6839 0.5713 0.6887 

Maximum drawdown -30.52% -27.96% -26.26% -25.66% -27.72% -26.03% 

Turnover 1.52% 2.48% 3.27% 4.31% 9.21% 3.52% 



new peak is attained. 

𝑀𝐷𝐷 =
min
𝜏∈(0,𝑇)

( min
𝑡∈(0,𝜏)

𝑃(𝜏) − 𝑃(𝑡))

max
𝑡∈(0,𝑇)

𝑃(𝑡)
− 1 (16) 

where 𝑇 is the total number of testing periods and 𝑃(𝑡) is the 

portfolio value at time 𝑡. 
Table 2 shows that not only standard deviation but also 

downside risks are decreasing as λ increases. It implies that 

the tail risk of the portfolio is also reduced. 

At last, we examine the stability of portfolio weights. In 

many cases, portfolio rebalancing requires a fee. It is one of 

the important factors when we evaluate practical performance. 

We define portfolio turnover as the average sum of the absolute 

value of the trades across the N assets. 

Turnover =
1

𝑇 − 1
∑∑|𝑥𝑖

𝑡+1 − 𝑥𝑖
𝑡|

𝑁

𝑖=1

𝑇−1

𝑡=1

 (17) 

where 𝑥𝑖
𝑡 is a portfolio weight to asset 𝑖 at time 𝑡. Table 2 

shows that increasing λ leads to a high turnover. The factor-

based risk parity portfolio(λ = 1 ) has the largest turnover. 

Figure 3 shows the portfolio weight and risk contributions of 

each portfolio. On the left side is the asset-based risk parity 

portfolio (λ = 0). The risk contributions to assets are always 

constant, but those to factors are sometimes concentrated. On 

the right side is the factor-based risk parity portfolio (λ = 1). 
We find the portfolio weight dynamically changes. On the 

middle is the PDI strategy. It gives the well-balanced portfolio 

involving the diversification between assets and factors.  We 

conclude that increasing the weight to factor diversification 

gives the reduction of portfolio risk involving tail risk, but the 

increase in portfolio turnover. The PDI strategy which can 

balance the factor and asset diversification provides better 

performance and practical advantage with lower turnover. 

 

5. CONCLUSION 
 

In this paper, we discuss the factor-based risk parity 

portfolio which combines factor investing and risk parity 

strategy. Both of them have attracted attention in recent years. 

This strategy aims at stable asset management that is not 

affected by the market environment.  We propose a new risk 

parity strategy which balances both asset and factor 

diversification. We develop the method in order to improve 

some shortcomings in the previous research.  

In the basic analysis, we find that the asset with higher 

exposure to risk factor tends to decrease its portfolio weight. 

Our method gives the well-balanced portfolio in consideration 

of risk contribution to assets and factors.  We also implement 

backtest under the investment on global financial assets.  We 

find the investment strategy involving the factor-based 

approach leads to reduce portfolio risk and improve the 

efficiency of asset management. 

In the future research, we need to compare with different 

risk parity strategies using downside risk measure. 
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