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Abstract. Our paper discusses optimal trading strategy of stock using limit orders for institutional investors who 

would like to minimize execution cost. The limit order could satisfy their needs due to the smaller market impact than 

market order. However, the limit order has risk of not being filled which is called nonexecution risk. Therefore, we 

must consider this risk for implementing the limit order strategy as well as market impact and timing risk. Some 

previous literatures assume the execution probability distribution is independent on the order size, ignoring their 

relationship. According to some empirical analyses, executing a larger amount of limit order is more difficult than a 

smaller amount. This relationship is required to be considered in execution strategy. They also force nonexecuted 

limit order to be replaced as market order only at maturity. The reorder strategy proposed in our paper allows 

investors to replace nonexecuted limit orders as new limit orders. This strategy is determined considering the trade-

off among nonexecution risk, market impact, and timing risk. The nonexecution risk can be considered more 

appropriately than other models through this strategy. The characteristics in our paper are as follows. 

1. We derive the optimal limit order strategy to solve the multi-period stochastic programming problem. 

2. We allow the replacement of nonexecuted order. 

3. We estimate market impact and execution probability distribution from tick by tick data in Tokyo Stock Exchange. 

These estimates are used for solving the optimization problem. 

4. We evaluate the nonexecution risk for the large amount of limit order empirically, and show the optimal strategy of 

reducing execution cost with the nonexecution risk. 

We examine the characteristics and usefulness of the model through the sensitivity analyses with respect to various 

parameters. The results show that the large order is placed from the first period under some parameter settings 

whereas splitting the target order into smaller pieces becomes optimal in other cases. 
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1. INTRODUCTION 
 

Institutional investors have tendency to hold position 

for longer period than day trader or HFT (High Frequency 

Trader). To do this, their position is required to be checked 

and rebalanced regularly for market change. When they 

rebalance their portfolio, there is huge risk of impact over 

stock exchange market. Traders in security companies who 

get such requests from institutional investors need to make 

execution strategy in order to reduce cost. When the huge 

order enters to the market, market price could change 

market price negatively. Consequently, execution cost 

becomes large. This risk is called market impact. There are 

many previous literatures discussing optimal split of huge 

orders to avoid this risk.  Generally, market impact is able 

to be mitigated through splitting the huge target amounts 

into smaller pieces. However, if it takes long time to 

liquidate huge amounts, unpredictable price change could 

cause large cost. This is called timing risk. 

The limit order setting both price and size has 

possibility to execute at lower cost than using market 

orders. However, limit order has risk of not being filled, 

called nonexecution risk. In order to make execution 

strategy using limit order, institutional investors have to 

consider trade-off relationship among market impact risk, 

timing risk, and nonexecution risk. 



Recently, Agliardi and Gencay [1] discussed optimal 

execution strategy with respect to limit orders.  They 

assume the probability of the limit order being filled, called 

fill rate, is dependent on the order size, and the market 

impact of limit order does not exist. They derive their 

optimal strategy assuming this relationship under the 

exponential distribution. This relationship is mentioned in 

some literatures such as Kumaresan-Krejic [2010], [2015]. 

They usually use trading data of hedge fund that could 

track their order submission to execution. However, there 

are no previous studies using tick by tick trading data 

concerning whether the assumption is reasonable. In 

addition, some previous literatures discuss the execution 

strategy for large institutional investors based on the 

existence of market impact of limit order. And also, their 

strategy does not allow us to trade intraday limit orders for 

unexecuted limit orders, but it only allows us to execute 

market orders at maturity for those unexecuted limit order. 

We could change this trading rule so that unexecuted limit 

order can be replaced as limit order from the next period. 

This reorder rule allows institutional investors to reduce 

unexecuted limit order volume aggressively. 

In this research, we propose the estimation models for 

the market impact and the fill rate.  These parameters are 

estimated empirically using tick by tick data of Tokyo 

Stock Exchange. Finally, the estimated parameters are 

implemented into optimization. The optimal execution 

strategy is expressed as the replacement of non-executed 

limit order. 

Our paper is organized as follows. We introduce an 

execution strategy model and its concept in Section 2. The 

market impacts of limit order are estimated in Section 3. 

We estimate the fill rate in Section 4. Using these estimated 

parameters, we derive the optimal execution strategy and 

conduct the sensitivity analyses in Section 5. Section 6 

concludes our paper. 

 

2. Optimal Execution Strategy Model 
 

We construct the model involving the market impact, 

timing risk, and nonexecution risk in order to derive the 

optimal limit order strategy. The strategy is calculated in 

the multi-period stochastic programming approach using 

Monte Carlo simulation method, proposed by Hibiki [4].  

This model gives a single optimal decision in each period 

under the simulation paths generated over the multiple 

periods. 

Only the main constraints are expressed due to space 

limitation. 

 

min
𝑥1,⋯,𝑥𝑁

  𝐸[𝐶𝑁+1] + 𝛾 ⋅ 𝐶𝑉𝑎𝑅[𝐶𝑁+1]  (1) 

𝑠. 𝑡. 𝑤𝑘
(𝑖)

= 𝜏𝑘
(𝑖)

𝑧𝑘
(𝑖)

  (2) 

 𝜏𝑘
(𝑖)

∼ 𝑇𝑁𝐷(𝑚𝑢𝑘
(𝑖)

(𝑧𝑘
(𝑖)

) , 𝑠𝑘
(𝑖)

(𝑧𝑘
(𝑖)

))  (3) 

 𝑧𝑘
(𝑖)

= min(𝑦𝑘−1
(𝑖)

, 𝑥𝑘)  (4) 

 𝑧𝑁+1
(𝑖)

= 𝑤𝑁+1
(𝑖)

= 𝑦𝑁
(𝑖)

  (5) 

 𝑦𝑘
(𝑖)

= 𝑦𝑘−1
(𝑖)

− 𝑤𝑘−1
(𝑖)

 (𝑘 = 1, ⋯ , 𝑁 + 1)  (6) 

 ln 𝑃𝑘
(𝑖)

= ln 𝑃𝑘−1
(𝑖)

+ 𝐿𝑀𝐼 ⋅ 𝑧𝑘
(𝑖)

+ 𝜎𝜉𝑘
(𝑖)

  (7) 

 ln 𝑃𝑁+1
(𝑖)

= ln 𝑃𝑁
(𝑖)

+ 𝑀𝑀𝐼 ⋅ 𝑧𝑁+1
(𝑖)

+ 𝜎𝜉𝑘
(𝑖)

  (8) 

 𝐶𝑘
(𝑖)

= 𝑤𝑘
(𝑖)

(ln 𝑃𝑘
(𝑖)

− ln 𝑃0
(𝑖)

) + 𝐶𝑘−1
(𝑖)

  (9) 

 𝐶𝑉𝑎𝑅[𝐶𝑁+1] = 𝑎𝛽 +
1

(1−𝛽)𝐼
∑ 𝑢(𝑖)𝐼

𝑖=1   (10) 

 𝑎𝛽 − 𝐶𝑁+1
(𝑖)

+ 𝑢(𝑖) ≤ 0  (11) 

 0 ≤ 𝑢(𝑖)  (12) 

 ∑ 𝑤𝑘
(𝑖)𝑁+1

𝑘=1 = 𝑦  (13) 

 𝑦0
(𝑖)

= 𝑦, 𝑦𝑁+1
(𝑖)

= 0, 𝑃0
(𝑖)

= 𝑃0, 𝐶0
(𝑖)

= 0  (14) 

 

𝐼 is the total number of simulation paths whose index 

is 𝑖, and 𝑁 is the total number of trading period whose 

index is 𝑘. Therefore, we generate 𝐼 simulation paths and 

derive the optimal strategy over 𝑁 periods. 

Unpredictable price change is denoted by 𝜉𝑘
(𝑖)

 and 

reflect timing risk, where 𝜉𝑘
(𝑖)

 follows independent and 

identical standard normal distribution.  We assume that the 

price change is based on geometric Brownian motion, and 

expressed by lognormal distribution. The initial asset price 

is denoted by 𝑃0 .  Market impact of limit and market 

orders are assumed to be linear to the order size, and these 

parameters are denoted by 𝐿𝑀𝐼 and 𝑀𝑀𝐼, respectively.  

Linear price impacts imply the flat-shaped order book.  

Market order is only executed at maturity in order to meet 

the target amount completely. 

The target volume is denoted by 𝑦.  The posted order 

volume 𝑧𝑘
(𝑖)

 is given by the minimum value of the 

remaining order volume at (k-1)-th period 𝑦𝑘−1
(𝑖)

 and upper 

bound of order size 𝑥𝑘 which is a decision variable of the 

model. If the remaining order volume 𝑦𝑘
(𝑖)

 is relatively 

large and posted, it could cause huge market impact. This 

often may occur during the early periods.  In this case, 

posting only the upper bound could be better.  On the 

other hand, when remaining order volume 𝑦𝑘
(𝑖)

 is 

sufficiently small and posted, it might not make large 

impact. This is a typical situation in the later periods, and 

posting the remaining amount could be optimal in 

considering timing risk and nonexecution risk. 

The execution percentage 𝜏𝑘
(𝑖)

 are determined under 

the limit order 𝑧𝑘
(𝑖)

.  This fill rate is dependent on the 

order volume 𝑧𝑘
(𝑖)

 and follows truncated normal 

distribution (TND) ranged between zero and one. The 

parameters of TND, or mean 𝑚𝑘
(𝑖)

 and standard deviation 

𝑠𝑘
(𝑖)

, are estimated through the regression analysis discussed 



in the later section.  Using the estimated mean 𝑚𝑘
(𝑖)

, 

standard deviation 𝑠𝑘
(𝑖)

, and a random number generated 

from uniform distribution 𝑢𝑘
(𝑖)

, a fill rate 𝜏𝑘
(𝑖)

 can be 

calculated.  If 𝜏𝑘
(𝑖)

 is below one, unexecuted order 

volume exists and the re-order must be executed forward.  

Reducing the remaining order volume allows the small 

market order to be executed in the strategy. 

The execution cost is defined based on the difference 

between a market price in each period and an initial price. 

The objective function is sum of expected cumulative 

execution cost and CVaR of the cost multiplied by the risk 

aversion coefficient 𝛾. 

Constraint (13) is imposed on the target volume, and 

the last constraints are set for the boundary conditions. 

We need to estimate market impact coefficients 𝐿𝑀𝐼, 

𝑀𝑀𝐼, and TND parameters 𝑚𝑢 and 𝑠𝑑 in the execution 

strategy model.  We discuss it from the next section. 

 

3. Market Impact 
3.1 Estimation Model 

 

In the previous literature by Cont et al. [3], the order 

flow imbalance, which is sum of limit, cancel, and market 

orders, is used to explain price change.  We use the 

following notations in the model: 𝐿𝑏 for limit buy, 𝐶𝑏 for 

cancel buy, 𝑀𝑏 for market buy, 𝐿𝑠 for limit sell, 𝐶𝑠 for 

cancel sell, and 𝑀𝑠  for market sell order.  The price 

change is expressed as, 

 

Δ𝑃𝑡 = 𝛽0 + 𝛽1 ⋅ 𝑂𝐹𝐼𝑡  (15) 

𝑂𝐹𝐼𝑡 = 𝐿𝑏𝑡 − 𝐶𝑏𝑡 − 𝑀𝑠𝑡 − 𝐿𝑠𝑡 + 𝐶𝑠𝑡 + 𝑀𝑏𝑡 (16) 

 

The expression in Eq. (16) is formulated due to the 

effect for price change.  For example, the inflow of market 

sell order may consume best bid price so that price goes 

down.   Therefore, the sign of 𝑀𝑠 can be negative.   

The model has two assumptions as follows. At first, it 

assumes that there are no correlations among six order 

types.  However, the correlations among six order types 

might exist.  According to our empirical data analysis 

using Tokyo Stock Exchange tick by tick data, the 

correlations are around 0.4 between cancel order and other 

limit and market orders, respectively. This shows that 

unexecuted limit order is canceled and replaced as a new 

market order or a limit order which could be executed more 

easily.  Therefore, these six order types are correlated each 

other, and we also find the assumption is not reasonable.  

The second assumption is that all six order types equally 

affect the price change.  However, it is not reasonable, 

because the market impact of market order is, for example, 

l a r g e r  t h a n  l i m i t  o r d e r  i n  g e n e r a l .   

We improve the model in order to analyze the data 

under the more reasonable assumptions.  At first, we 

delete the cancel order from the regression in order to 

remove large correlations among order types.  Second, we 

divided the OFI into order types so that we can have 

different impacts for limit and market orders.  The 

regression model is constructed as follows. 

Δ𝑃𝑡 = 𝛽0 + 𝛽1𝐿𝑏𝑡 − 𝛽2𝑀𝑠𝑡 − 𝛽3𝐿𝑠𝑡 + 𝛽4𝑀𝑏𝑡 (17) 

The logarithm of mid-price change Δ𝑃𝑡  is expressed 

with these four orders.  The signs of 𝛽𝑖(𝑖 = 1, … ,4) must 

be positive. 

 

3.2 Data 
 

Tick by tick data of Tokyo Stock Exchange in 2016 is 

used for estimation. We rank the Nikkei 225 stocks in order 

of trading value. Then, the assets are divided into four 

groups.  We select two stocks for estimation.  Softbank 

(9984) is chosen as the most liquid stock, and Sumitomo 

Dainippon Pharma (4506) is chosen as the least liquid stock.  

We call these stocks “Stock A” and “Stock B”, respectively. 

 

3.3 Result of Estimation 
 

Figure 1 shows the market impacts estimated in the 

proposed regression model.  The coefficients of stock A is 

on the left side, and stock B on the right side.   They are 

adjusted in an order unit of 1,000,000-yen to normalize the 

difference of price range. 

Adjusted 𝑅2 of stock A is 0.498 and stock B is 0.480. 

These are relatively large and the regression model is 

suitable to describe price change. 

Other four order types are significant and the regression 

model itself is significant as well.  However, the intercepts 

in the model are not statistically significant.  According to 

Figure 1, the market impact of the least liquid stock is far 

larger than the most liquid stock.  Furthermore, the market 

impact of market order is larger than that of limit order.  

We test hypothesis that the four order types have the same 

impact, and reject it.  Therefore, the assumption of 



previous literature is not correct.  The result implies that 

the limit order strategy could reduce execution cost more 

than the market order strategy.  Finally, the market sell 

order has the largest impact among four order types. We 

could say that investors are afraid of large negative event to 

stock price, and react aggressively. 

We use 𝛽1  as 𝐿𝑀𝐼  and 𝛽4  as 𝑀𝑀𝐼  for the 

optimization model shown in Section 2. 

 

 

4. Fill Rate 
4.1 Estimation Model 

 

We refer to the Cont and Kukanov [2] model for 

estimating the fill rate. The fill rate is estimated by tracking 

incoming limit order 𝐿𝑡, outflowing cancel order 𝐶𝑡 and 

market order 𝑀𝑡, and initial depth 𝑉𝑡−1. Their estimation 

model is expressed as in Eq. (18). 

𝑝(𝐿𝑡) = min(max(
𝑀𝑡 + 𝐶𝑡 − 𝑉𝑡−1

𝐿𝑡

)) (18) 

However, the cancel order is not modeled properly in 

their research. Their model assumes that cancel order is 

limited to currently placed limit order. This assumption is 

true in the short execution time horizon, such as a few 

seconds. However, we need to examine the assumption 

when we focus on execution strategy in the long time 

horizon, such as 10 to 15 minutes. 

The estimation model introduced here considers 

cancel order more precisely. We track incoming limit order 

𝐿𝑡, cancel order 𝐶𝑡, and market order 𝑀𝑡 until the best 

price is renewed to outside of the spread. When the best 

price is moved to outward, incoming limit orders 𝐿𝑡 are 

assumed to be cancelled or liquidated by market order 𝑀𝑡. 

The cancel order 𝐶𝑡 is assumed to be included in both 

depth 𝑉𝑡−1  and incoming limit order 𝐿𝑡 . We define 

relative percentage of 𝐶𝑡 included in 𝐿𝑡 as a relative size 

of 𝐿𝑡 to the sum of 𝐿𝑡 and 𝑉𝑡−1. This ratio is denoted by 

𝐿𝑅 as in Eq. (19). The amount of executed limit order is 

obtained using depth 𝑉𝑡−1 and amount of depth cancelled 

(1 − 𝐿𝑅) ⋅ 𝐶𝑡. In reference to Cont and Kukanov [2], the 

value of LR is assumed to be zero.  The fill rate is 

expressed as in Eq. (20). 

𝐿𝑅 =
𝐿𝑡

𝑉𝑡−1 + 𝐿𝑡

 (19) 

𝑝(𝐿𝑡) = min (max (
𝑀𝑡 + (1 − 𝐿𝑅) ⋅ 𝐶𝑡 − 𝑉𝑡−1

𝐿𝑡
, 0) , 1) (20) 

 

4.2 Result of Estimation 
 

The fill rates of limit buy order are estimated with 

order size. They are adjusted in an order unit of 100,000-

yen to normalize the difference of price range. Figure 2 

shows the graph of the estimation result where the mean of 

the estimated fill rate is on vertical axis and the order size is 

on horizontal axis. 

According to Figure 2, we could conclude that the fill 

rate declines as the order size increases and the assumption 

of Agliardi-Gencay [1] is reasonable. And also, the fill rate 

of stock B is more sensitive and decreases when order size 

increases. Since stock B is less liquid, the impact of the 

same order size to the daily transacted volume is relatively 

higher than stock A. Therefore, the incoming market order 

is smaller and large limit order of stock B is hard to be 

liquidated. 

We need to consider the fact that the increase in order 

size leads to the decline in the fill rate for managing 

nonexecution risk, because the relationship affects optimal 

execution strategy. To model this relationship, we regress 

the estimated fill rate using exponential function. We use 

𝑝(𝐿𝑡) = 𝑎 ⋅ exp(𝑏 ⋅ 𝐿𝑡) model. Table 1 shows the result of 

this regression analysis. 

 

Table 1: Coefficients of Fill Rate Regression 

 𝑎 𝑏 𝐴𝑑𝑗. 𝑅2 

A 0.813 -0.003 0.260 

B 0.770 -0.016 0.079 

 

We also find the standard deviation of fill rate is also 

exponentially declined to the increase in order size, and 

therefore we model a standard deviation of fill rate as an 

exponential function. We make TND random number using 

the standard deviation together with the mean. 

 

5. Numerical Analysis of Optimal Execution 
Strategy 
5.1 Basic Analysis 

 

We set the basic parameters: risk aversion coefficient 

𝛾 = 0.5, number of trading period 𝑁 = 6, and number of 



simulation path 𝐼 = 10,000.  Target order volume 𝑦 is 

set to 100.  An initial price 𝑃0 is given by the average 

daily end price in 2016. 

Figure 3 illustrates the result for stocks A and B, 

optimized under the basic parameters. The horizontal axis 

shows trading period from period 1 (t1) to period 6 (t6) and 

terminal market order (MO).  The vertical axis shows 

average posted order unit which is the average of 𝑧𝑘
(𝑖)

 in 

each period.  

According to Figure 3, all target volume is placed 

from the first period in stock A. In this case, all unexecuted 

order unit has been replaced since the second period.  The 

optimal solutions do not become large orders in the later 

periods and market order by reducing unexecuted order 

volume aggressively.  On the other hand, around a half of 

the target order volume is placed in the first period in stock 

B.  The optimal solutions are subject to the upper bound 

of order size 𝑥𝑘 in this case.  There is no period when 

huge order is placed, because of splitting the target into 

smaller pieces. 

The difference in the optimal strategies can be 

explained using the risks introduced previously. In case of 

stock A, market impact is relatively small. And also, 

nonexecution risk of limit order is smaller than stock B. 

Therefore, timing risk becomes critical. By placing huge 

order from the first period, the optimal strategy enables the 

investor not to be influenced by unpredictable market price 

change. On the other hand, we need to focus on 

nonexecution risk of huge limit order and market impact 

for stock B.  If the market impact is large, there is 

incentive to split the order into smaller pieces so that the 

impact does not occur. What is more, Figure 2 shows that 

the large limit order is harder to be executed than smaller 

limit orders in case of stock B. Splitting the target is the 

optimal strategy in stock B in consideration of these two 

risks.  

 

5.2 Risk Aversion Coefficient 
 

Next, we analyze the sensitivity of optimal strategy to 

the risk aversion coefficient 𝛾. As we have seen in the 

previous basic case analysis, stock A has a strong incentive 

to control timing risk due to small market impact. 

Therefore, we focus on stock B in order to highlight the 

sensitivity to the parameters. Here, we set three kinds of 

risk aversion coefficients which are 0, 1, and 10. The 

optimal average posted order units are shown in Figure 4. 

The large order is placed in setting small 𝛾 and small 

order placement in large 𝛾. When 𝛾 is large, risk measure 

CVaR is largely weighted.  When a large amount is 

ordered in the market, the range of unexecuted order 

volume becomes wider than smaller order and execution 

cost range becomes wider as well. Consequently, CVaR 

becomes larger. Therefore, splitting the order amounts is 

the optimal strategy in larger 𝛾 to prevent the cost from 

fluctuating. 

 

5.3 Market Impact of Limit Order 
 

We examine the sensitivity of market impact of limit 

order (LMI). We focus on stock B as in the previous section.  

We set ten kinds of LMIs, which are the basic parameter of 

LMI (=0.000045) multiplied by zero and ten.  Figure 5 

shows optimal strategies.  

The initial order size is large when LMI is small and it 

becomes small when LMI becomes large. In case of smaller 



LMI, the investor does not have to pay attention to market 

impact risk. Therefore, timing risk becomes critical and all 

target amounts are placed in the first period. On the other 

hand, if LMI becomes large, there is no incentive to use 

limit order and splitting target is optimal. 

 

5.5 Nonexecution Risk and Execution Cost 
 

Finally, we examine the execution cost for two kinds 

of optimal strategies with/without nonexecution risk, which 

are called Strategy A and B, respectively. Strategy A 

considers the relationship between order size and fill rate 

which is estimated in the previous section, whereas 

Strategy B assumes that the fill rate is independent to order 

size. We get the same results for Strategy A and B in case 

of stock A since all remaining order volume is placed in 

each period. Therefore, we focus on stock B, and show 

optimal strategies in Figure 6. 

The initial order size is slightly smaller in case of 

Strategy A. Since executing a large amount of limit order is 

more difficult than a small amount, the optimal strategy of 

splitting into pieces is chosen to avoid a large order. The 

objective function (Obj), expected execution cost (E[Cost]), 

and CVaR of execution cost is summarized in Table 2. 

 

Table 2: Nonexecution Risk and Execution Cost 

 Obj E[Cost] CVaR 

Strategy A 1.269 0.789 0.960 

Strategy B 1.272 0.789 0.965 

 

The slight decrease in CVaR contributes to the 

decrease in the objective function value by managing 

nonexecution risk of large limit order. We conclude that the 

proper management could reduce execution cost. 

 

6. Conclusion 
 

Optimal execution strategy using limit order is 

proposed in this research. Market impact and fill rate are 

estimated through empirical data analysis. According to the 

estimation, market impact of liquid stock is smaller than 

illiquid stock and fill rate of liquid stock is higher than 

illiquid stock. These parameters highlight the difference of 

optimal strategy. All target volume is placed in liquid stock 

due to timing risk, whereas the target is divided into pieces 

in less liquid stock considering market impact and 

nonexecution risk of large limit order. 

In this research, the fill rate of limit order is estimated 

using tick by tick data.  The limit order strategy for 

institutional investors is optimized with the estimated 

parameters. According to the estimation, we find that the 

limit order is hard to be executed if its order size becomes 

large especially in case of less liquid stocks. We could also 

estimate this relationship through regression analysis using 

exponential function.  We derive the optimal execution 

strategy in consideration of the relationship.  In case of 

high liquid stock, all target volume is placed due to timing 

risk and nonexecution risk. However, the optimal strategy 

is to split the target into smaller pieces in case of less liquid 

stock because of the market impact and another 

nonexecution risk which relates to dependency of fill rate 

to order size. 

Market order could also be used with limit order to 

execute more efficiently. And also, market impact of limit 

order should carefully be discussed but these are future 

extensions of this research.  
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