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Abstract. When institutional investors trade a large amount of stock, they expose the market impact risk that stock price moves 
largely in undesired direction due to the imbalance of supply and demand in the market. They trade the total order amount little by 
little in order to reduce market impact. On the other hand, the timing risk is also exposed owing to uncertainty of stock price. 
Considering the trade-off between the market impact risk and timing risk, they need to plan the optimal execution strategy. Ono, 
Hibiki and Sakurai(2017) develop an optimal execution strategy based on a transient impact model in which market impact 
gradually decays over time. Ono et al.(2017) employ the method of Bouchaud et al.(2004) so as to estimate a decay kernel of 
transient impact from the market data. However, this method has the difficulty of estimating it well, and therefore a more robust 
method is required. In our study, we use the price model based on a Hawkes process proposed by Bacry et al.(2013) and analyze 
the method of identifying a decay kernel of transient impact based on Amaral and Papanicolaou(2017).  In the empirical analysis, 
we calibrate the parameters of Hawkes process with exponential kernel from the market data and demonstrate that the liquidity or 
intraday seasonality does not affect resilience of transient impact significantly because it only affects the baseline intensity of 
Hawkes process. Finally, we show that the method of using Hawkes process is more robust, compared with the method of Bouchaud 
et al.(2004).  
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1. INTRODUCTION 

The institutional investors such as insurance companies 
and pension funds have to trade a large amount of stock when 
they construct and rebalance their portfolio. Then, the stock 
price moves largely in undesired direction due to the imbalance 
of supply and demand in the market. Such price moving is 
called market impact, which is managed as one of risks in the 
execution of large orders. They can reduce market impact by 
trading the total order amount little by little. They are also 
exposed to another risk that they cannot execute orders at the 
desirable price due to the uncertainty of the stock price. It is 
called timing risk, and there is a trade-off relationship between 
market impact risk and timing risk. Considering this 
relationship, it is important to plan trading strategies of 
minimizing total execution costs. 

There are a lot of previous studies concerning the optimal 
execution strategy using market impact model.  Most studies 
such as Almgren and Chriss(2001), Takenobu and 
Hibiki(2016) derive the execution strategy based on 
temporary/permanent impact model. Recently, it is said that 
the transient impact model is a more realistic model than the 
temporary permanent impact model.  Ono et al.(2017) solve 

an optimal execution problem under the existence of transient 
impact such that temporary impact is gradually recovered over 
time.  

When we develop the transient impact model to derive the 
optimal execution strategy in practice, it is necessary to 
estimate the decay kernel of transient impact appropriately 
from the market data. Ono et al.(2017) estimate the transient 
impact nonparametrically based on the method of Bouchaud et 
al.(2004), and model the decay kernel parametrically using 
exponential and power functions. However, the method of 
Bouchaud et al. (2004) has a disadvantage for the low liquidity 
stock because of inducing a strong bias.  

The transient impact is defined as the decay of stock price 
after the market impact, and we need the statistically effective 
number of execution samples of the large amount of orders by 
a specific trader in order to obtain the estimates.  However, 
most actual data is anonymously available. One method of 
estimating from anonymous data is developed under a Hawkes 
process. The Hawkes process has been studied long for 
modeling earthquakes. Recently, a model using a Hawkes 
process has drawn attention for financial high frequency data 
analysis. Bacry et al. (2013) propose a high frequency price 
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model using a Hawkes process in order to solve the problem 
caused by the microstructure noise where the volatility and 
covariance cannot be estimated well. It has been widely 
applied in other fields of finance. Amaral and Papanicolaou 
(2017) studied decay of market impact under the condition that 
an external impact is involved in the mutually excited two-
dimensional symmetric Hawkes process with exponential 
kernel. In this paper, we analyze the decay of market impact 
using the Hawkes process in reference to Amaral and 
Papanicolaou (2017),. 
 
2. MODEL 

First, we explain the theory of Hawkes process.  Next, 
we define a mid-price process as the difference of counting 
process between the events of rising price and falling price 
under mutual excited symmetric two-dimensional Hawkes 
process. Finally, we explain the theory of identifying transient 
impact based on the behavior after giving an external impact 
to the price process. 
 
2.1 Theoretical background of Hawkes process 
2.1.1 Definition of Hawkes process 

First, we introduce the concept of “intensity”. This is 
equivalent to a hazard rate, which represents the probability of 
occurrence of instantaneous events in credit risk and survival 
time analysis. 
Definition 1. Intensity 

Assuming that a counting process 𝑁(𝑡)  is a point 
process adapting to filtration ℱ& , the left-continuous intensity 
is defined as in Eq. (1). 

𝜆(𝑡|ℱ&) = lim
-↓/

𝔼 1
𝑁(𝑡 + ℎ) − 𝑁(𝑡)

ℎ |ℱ&5															(1)  

As can be seen from Eq.(1), the intensity function 
represents probability density such that the next event is 
observed under the information given up to time t. Let us 
assume that the filtration ℱ&  always exists for 𝑁(𝑡)  and 
denote 𝜆(𝑡|ℱ&) as 𝜆(𝑡) to avoid complications.  A Poisson 
process is one of the simplest point processes. 

 
Definition 2. Poisson process 

Let 𝜆 be real number more than or equal to zero, 
and a point process defined by Eqs.(2) and (3) is called a 
Poisson process. 

𝑃[𝑁(𝑡 + ℎ) − 𝑁(𝑡) = 1|ℱ&] = 𝜆ℎ + 𝑜(ℎ)					(2)  

𝑃[𝑁(𝑡 + ℎ) − 𝑁(𝑡) > 1|ℱ&] = 𝑜(ℎ)													(3)  
The Poisson process has the properties that each time 

point is stochastically independent of all of other time points 
and the duration between successive events follows 
exponential distribution with the parameter 𝜆. 

Hawkes (1971) propose a self-exciting point process, 
which is more generalized than a Poisson process, and called a 

Hawkes process.  
 
The intensity 𝜆 of the Poisson process is a constant value 

or a time dependent and deterministic function, whereas the 
intensity of the Hawkes process is excited by past events. We 
explain how the intensity is defined in the Hawkes process. 

 
Definition 3. Intensity of multi-dimensional Hawkes 
process 

We define D-dimensional Hawkes process {𝑁@(𝑡)}BC@CD 
and intensity corresponding to { {𝜆@(𝑡)}BC@CD , which has 
probabilistic dynamics in Eq. (4), 

𝜆@(𝑡) = 𝜇@ +FG 𝜑@I(𝑡 − 𝑠)𝑑𝑁I(𝑠),			∀𝑖 ∈ [1, 𝐷]
&

/

D

IQB

,				(4)  

where 𝜇@ is a baseline intensity of the sequence, 𝜑@I(𝑡 −
𝑠)  is an excitation function representing the degree of 
influence of the sequence 𝑖  receiving from sequence 𝑗 
and is called a Hawkes kernel. Representative Hawkes 
kernels are as follows.  
 
Exponential	kernel ∶ 𝜑@I(𝑡 − 𝑠) = 𝛼@I𝑒abc(&de)													(5)  

Power − law	kernel ∶ 𝜑@I(𝑡 − 𝑠) = 𝛼@I(𝛾@I + 𝑡 − 𝑠)dabc 		(6) 

 
2.1.2 Calibration 

The maximum likelihood method is a most general 
calibration method for estimating a Hawkes process. When 
a Hawkes kernel is exponential, a log-likelihood function 
lnℒ of a multi-dimensional Hawkes process is showed by 
Ogata (1978) as, 

ln ℒ(𝑁(𝑡)&Cl) =Fln ℒ@({𝑁@(𝑡)}&Cl)
D

@QB

        	 	

= Fm−𝜇@𝑇 +FF
𝛼@I

𝛽@I
p𝑒da

bcqld&r
cs − 1t

&r
c

D

IQB

D

@QB

+Fln u𝜇@F𝛼@I𝑅@I(𝑙)
D

IQB

	x
&y
b

z	,												(7)	

where 𝑅@I(𝑙) follows a recursive formula as in Eq. (8) 

𝑅@I(𝑙) = F 𝑒da
bcq&y

bd&r
cs

&r
c|&y

b

																												(8) 	

=

⎩
⎨

⎧𝑒da
bc�&y

bd&y��
b �𝑅@I(𝑙 − 1) + F 𝑒da

bcq&y
bd&r

cs		for	𝑖 ≠ 𝑗
&y��
b C&r

c|&y
b

𝑒dabc�&y
bd&y��

b �(1 + 𝑅@I(𝑙 − 1))		       for	𝑖＝𝑗		

	 

As the number of dimensions increases, the number of 
parameters increases in the squared order.  Furthermore, a 
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log-likelihood function of Hawkes process is non-convex, and 
therefore it is difficult to estimate parameters in general.  A 
Nelder-Mead method (1965) has been a well-known algorithm 
of obtaining global optimal solutions effectively without 
gradient information only using the function values.  
Therefore, the method has been often used for the calibration 
of Hawkes process.  On the other hand, Lu and Abergel (2017) 
point out that the differential evolution method proposed by 
Storn and Price (1996) is more effective.  It adopts an 
algorithm of searching the optimal solution using 
metaheuristics. Our paper also uses the differential evolution 
method as the optimization algorithm when calibrating the 
parameters of Hawkes process from the market data in the 
empirical analysis. 
 
2.2 Hawkes-based price model 

Next, we explain the price model using a Hawkes process, 
proposed by Bacry et al. (2013). They derive the price process 
considering the microstructure by modelling up and down 
events of mid-price with two-dimensional Hawkes process. 
The model may be able to cope with the microstructure noise 
where the volatility and covariance cannot be properly 
estimated due to remarkably short intervals in high frequency 
data analysis. This price process is collectively referred to as a 
Hawkes-based price model in this paper. Especially, we 
employ the symmetric Hawkes-based pricing model which 
takes into account only the influence of mutual excitation. The 
price process is defined in the following. 

 
Definition 4. Mutually excited two-dimensional symmetric 
Hawkes-based price model 

(𝑁�(𝑡), 𝜆�(𝑡))  and 	(𝑁�(𝑡), 𝜆�(𝑡))  are two pairs of 
counting and intensity processes of up and down events of 
mid-price, respectively. Then, the intensity process is 
formulated so that each is mutual excited with symmetrical 
exponential kernels, as  

𝜆�(𝑡) = 𝜇 +G 𝛼𝑒da(&de)𝑑𝑁�(𝑠)
&

/
														(9) 	

𝜆�(𝑡) = 𝜇 + G 𝛼𝑒da(&de)𝑑𝑁�(𝑠)
&

/
													(10) 	

where 𝜇 is a baseline intensity, 𝛼 is mutual excitation, and 
𝛽 is a degree of decay intensity.  When the tick size is 𝛿, the 
price process 𝑆(𝑡) is defined, using the difference between 
counting processes of up and down events of mid-price. 

𝑆(𝑡) = 𝑆(0) +
𝛿
2
�𝑁�(𝑡) − 𝑁�(𝑡)�											(11)  

2.3 Estimation method of transient impact under 

Hawkes-based pricing model 
When we give an external impact on a Hawkes-based 

price model with an exponential kernel, we analyze the 
behavior of price process and estimate the decay kernel of 

transient market impact. 
We express the decay of market impact in the Hawkes-

based price model by giving the external impact to intensity 
together with the external market impact to the price process. 
In the mutual excited two-dimensional Hawkes process, the 
jump size 1 is immediately excited by 𝛼 to mutual excitation. 
Therefore, when externally giving the market impact of 𝜓(𝑞) 
to mid-price, the jump size is 2𝜓(𝑞). It can be reasonably 
considered that the mutual excitation degree becomes 2𝜓(𝑞)𝛼 
according to the jump size. 

Therefore, when an external impact occurs at time 𝑡/ ≥
0, the impact model of the mutually excited symmetric two-
dimensional Hawkes process with an exponential kernel is 
formulated as follows. 

𝜆�(𝑡) = 𝜇 + G 𝛼𝑒da(&de)𝑑𝑁�(𝑠)
&

/
																	(12) 	

𝜆�(𝑡) =

⎩
⎪
⎨

⎪
⎧𝜇 + G 𝛼𝑒da(&de)𝑑𝑁�(𝑠)

&

/
																															 (0 ≤ 𝑡 ≤ 𝑡/)

𝜇 +
2
𝛿 𝜓

(𝑞)𝛼𝑒da(&d&�) +G 𝛼𝑒da(&de)𝑑𝑁�(𝑠)
&

/
	(𝑡/ ≤ 𝑡)

																																																																																																			(13)

 

Figure 1 shows the simulation of exerting external impact 
on the intensity of mutually excited symmetric two-
dimensional Hawkes process. Figure 2 shows the 1000 
simulation paths of price process. 

 

Figure 1: Intensity process of giving an external impact to the 
Hawkes-based price model at 𝑡 = 10 

 
Figure 2: Price process of giving an external impact to the 
Hawkes-based price model (left: simulation paths, right: 
average path) 
 

In the case of exponential kernel, the expected value of 
price process can be explicitly derived in Amaral and 
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Papanicolaou (2017) (see the proof in appendix). The property 
of the market impact in this case is summarized as Property 1. 

 
Property 1. Impact property of mutually excited two-
dimensional symmetric Hawkes process with exponential 
kernel 

When the temporary impact is any increase function 
𝜓(𝑞), the mutual excitation is 𝛼 , and the degree of decay 
intensity is 𝛽 , the decay kernel of transient impact and 
permanent impact are determined as follows. 

decay	kernel	of	transient	impact：𝐺(𝑡) = 𝑒d(��a)&	

permanent	impact：
𝛽

𝛼 + 𝛽𝜓(𝑞) 

This is a very simple property, which means that the 
market impact can be specified only by the mutual excitation 
𝛼 and decay intensity 𝛽 in the Hawkes process. In fact, the 
result of the simulation is as shown in Figure 2. When we 
estimate the mutual excitation 𝛼 and the intensity attenuation 
𝛽  appropriately from the actual market tick data, we can 
immediately specify that the decay kernel of the transient 
impact becomes the exponent of the resilience 𝜌 = 𝛼 + 𝛽 
under the property. 

 
3. EMPIRICAL ANARYSIS 

In this section, using the market data, we calibrate the 
parameters with respect to events of variation of mid-price to 
a mutually excited two-dimensional symmetric Hawkes 
process with an exponential kernel and examine some issues. 

First, we estimate Hawkes parameters for each stock with 
different liquidity. Based on the results, we examine how the 
difference in liquidity affects the estimation result of transient 
impact. Second, we divide trading time into every 30 minutes 
over time periods and estimate Hawkes parameters from each 
divided data. We investigate whether the estimation result of 
transient impact is affected by intraday seasonality. Finally, we 
show the case that we fail to estimate the decay kernel using 
the method of Bouchaud et al. (2004), and we examine the 
possibility that the method using Hawkes process is more 
robust. 
 
3.1 Data 

We select the stocks in Table 1 from stocks listed on 
Tokyo Stock Exchange in consideration of liquidity. For all 
stocks, we use the tick data, which is all of the order history of 
the market for all 247 business days during the period from 
January 4, 2012 to December 28, 2012.  The tick data only 
during the trading time (9: 00-11: 30, 12: 30-15: 00) is used. 

Table 1: List of stocks for analysis 

 
3.2 Estimation by the method using Hawkes process 
    We calibrate the parameters with respect to events of 
variation of mid-price mutually excited two-dimensional 
Hawkes process with exponential kernel, and we specify a 
decay kernel of transient impact for each stock. These results 
are shown in Table 2.  The results show that the higher the 
liquidity is, the larger the estimated baseline intensity 𝜇 is. On 
the other hand, the mutual excitation 𝛼  and the decay 
intensity 𝛽  are not always large because of high liquidity 
stock. The result means that the high liquidity stocks have the 
property that the frequency of occurrences of mid-price 
variation events is high and the baseline intensity 𝜇  is 
estimated high in the actively traded market, whereas the 
mutual excitation 𝛼 and the decay intensity 𝛽 are estimated 
independently on the market activity. Therefore, the resilience 
𝜌 of transient market impact equal to the sum of 𝛼 and 𝛽 
does not depend on liquidity. 
 

Table 2: Results of calibration to Hawkes process

 

 

3.3 Analysis on intraday seasonality 
There is a phenomenon that the high volatility occurs and 

the large amounts are traded immediately after the opening of 
the market and just before closing in one day in the stock 
market. This is called U-shaped pattern, or intraday seasonality. 
We analyze the influence of the intraday seasonality on 
resilience of transient market impact by estimating Hawkes 
parameters from the data of each time periods. The estimates 
of parameters regarding Softbank (9984) are shown in Figure 
3. The baseline intensity 𝜇  is large immediately after the 
opening of the market and gradually decreases over time.  In 
contrast to the baseline intensity 𝜇, the mutual excitation 𝛼 
and the decay intensity 𝛽 remain unchanged over time. From 
the result, we confirm that the influence of the intraday 
seasonality in the Hawkes process is largely depended on only 
the baseline intensity 𝜇. 
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Figure 3: Hawkes parameters of Softbank (9984) in each time 
periods 
	
3.4 Estimation by the method of Bouchaud et al. 
(2004) 
    Bouchaud et al. (2004) assume that stock prices are 
represented by the sum of transient impacts caused by all past 
transactions. This supposes that the stock price 𝑝�  at time n 
can be expressed as, 

𝑝� = F 𝐺/(𝑛 − 𝑛�)𝜖�  ln𝑉�  + F 𝜂� 
d£|� |�d£|� |�

	, (14)  

where 𝜖�  represents a transaction sign at time n, and 𝑉� 
represents a transacted amount at the time n.  It is possible to 
estimate decay kernel 	𝐺/  nonparametrically from market 
data under the assumption. 

Next, we apply the method of Bouchaud et al. (2004) to 
high and low liquid stocks. These results are shown in Figure 
4. Although the decay kernel can be estimated well in high 
liquid stock, it is difficult to estimate it stably in low liquid 
stock because of less number of samples. 

 

Figure 4: Decay kernel estimation using the method of 
Bouchaud et al. (2004) (left: Softbank (9984) which is high 
liquid, right: S. T. Corporation (4951) which is low liquid) 
 
4. CONCLUSION 
    In this paper, we outline the method of estimating decay 
kernel of transient impact using a Hawkes process, and 
conduct the empirical analysis. We find that the resilience 𝜌 
of transient market impact does not depend on liquidity and 
was not affected by the intraday seasonality. Also, we compare 
the method using a Hawkes process with the method of 

Bouchaud et al. (2004), and examine the possibility that the 
method using Hawkes process is more robust.  Furthermore, 
we need to examine the properties of methods using the 
hypothetical data in order to compare them under the different 
situations. This is our future research. 
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APPENDIX. Analytical solution of decay kernel of 
transient market impact based on Hawkes-based 
price model with exponential kernel 
 

The following equations hold by calculating the expected 
value of probability differential equation followed by intensity 
of the mutually excited Hawkes process, 
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𝑑𝔼[𝜆�(𝑡)] = 𝛽(𝜇 − 𝔼[𝜆�(𝑡)]) + 𝛼𝔼[𝑑𝑁�(𝑡)]	
𝑑𝔼[𝜆�(𝑡)] = 𝛽(𝜇 − 𝔼[𝜆�(𝑡)]) + 𝛼𝔼[𝑑𝑁�(𝑡)] 

 
We calculate the difference using 𝔼[𝑑𝑁(𝑡)] = 𝔼[𝜆(𝑡)]𝑑𝑡 due 
to technical reason for computation. The ordinary differential 
equation of 𝔼[𝜆�(𝑡) − 𝜆�(𝑡)] is expressed as,  

𝑑
𝑑𝑡 	𝔼

[𝜆�(𝑡) − 𝜆�(𝑡)] = −(𝛼 + 𝛽)𝔼[𝜆�(𝑡) − 𝜆�(𝑡)]. 

The solution is  
 

𝔼[𝜆�(𝑡) − 𝜆�(𝑡)] = −�𝜆�(𝑡/) − 𝜆�(𝑡/)�𝑒d(&d&�)(��a). 
 
Next, we introduce the market impact. When the market 
impact of 𝜓(𝑞) occurs at time 𝑡/, intensity of the down event 
of mid-price is expressed as 𝜆�(𝑡/) → 𝜆�(𝑡/) + 2𝜓(𝑞)𝛼 
caused by price movement of temporary market impact 𝜓(𝑞), 
and it can be rewritten as follows. 

𝔼[𝜆�(𝑡) − 𝜆�(𝑡)] = −p𝜆�(𝑡/) − 𝜆�(𝑡/)

−
2𝛼
𝛿 𝜓(𝑞)t 𝑒d(&d&�)(��a) 

Therefore, the expected value of price process after the 
influence of temporary market impact at 𝑡 > 𝑡/ becomes  

𝔼[𝑆(𝑡)] = 𝑆(𝑡/) + 𝜓(𝑞) +
𝛿
2 𝔼

1G �𝑑𝑁�(𝑠) − 𝑑𝑁�(𝑠)�
&

&�
5 

= 	𝑆(𝑡/) + 𝜓(𝑞) +
𝛿
2
G 𝔼[𝜆�(𝑡) − 𝜆�(𝑡)]𝑑𝑠
&

&�
	

= 𝑆(𝑡/) + 𝜓(𝑞) +
𝛿
2 ¦𝜆

�(𝑡/) − 𝜆�(𝑡/)

−
2𝛼
𝛿 𝜓(𝑞)§G 𝑒d(&d&�)(��a)𝑑𝑠

&

&�
	

= 𝑆(𝑡/) + 𝜓(𝑞)

+
¨
©
�𝜆�(𝑡/) − 𝜆�(𝑡/)� − 𝛼𝜓(𝑞)�1 − 𝑒d(&d&�)(��a)�

𝛼 + 𝛽 . 

When t→∞, the permanent impact P is  
𝑃 = lim

&→£
(𝔼[𝑆(𝑡)|𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑] − 𝔼[𝑆(𝑡)|𝑛𝑜	𝑖𝑚𝑝𝑎𝑐𝑡])	

= 𝜓(𝑞)
𝛽

𝛼 + 𝛽 


