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Abstract. When institutional investors trade a large amount of a stock in the market, the trading amount might
impact the price, and the price change is called market impact. In addition, their trading is always exposed to
uncertain price change, which is called timing risk. They need to evaluate quantitatively market impact and timing
risk, and decide optimal execution strategy in consideration of the trade-off between them. Many previous studies
assume temporary / permanent market impact, but recently some studies are discussed under the assumption of
transient market impact. On the other hand, institutional investors need to manage the downside risk when they
execute the order to meet the trading needs within the target cost. In our paper, we discuss the dynamic optimization
models with transient market impact and downside risk in order to decide the optimal execution strategy.
Specifically, we propose the following three types of the models, based on Takenobu and Hibiki (2016) which
assume temporary / permanent market impact.

(1) Hybrid multi-period stochastic optimization model using Monte Carlo simulation.

(2) Piecewise liner approximation model based on the hybrid model

(3) Iterative model with static execution strategy

We solve the optimal execution problems using the models, and conduct the sensitivity analysis in order to examine
the usefulness of the models. In addition, we compare three models, and evaluate the characteristics and the
difference among them. We estimate the market impact function and other parameters using market data, and derive
the optimal execution strategies for practical use.
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1. INTRODUCTION

When institutional investors trade a large amount of a
stock in the market, the trading amount might impact the
price, and the price change is called market impact. In
addition, their trading is always exposed to uncertain price
change, which is called timing risk. They need to evaluate
quantitatively market impact and timing risk, and decide
optimal execution strategy in consideration of the trade-off
between them. Many previous studies assume temporary /
permanent market impact. Bertsimas and Lo (1998) derive
the optimal strategy of minimizing expected cost which
assumes implicitly an investor is risk neutral. Almgren and
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Chriss (2001) derive the static optimal strategy using the
variance of cost as market timing risk measure. They use
the variance of total cost as a risk measure. On the other
hand, institutional investors need to manage the downside
risk when they execute the order to meet the trading needs
within the target cost. In addition, the investors develop
the dynamic execution strategy in consideration of the price
impact cost and market timing risk appropriately.
Takenobu and Hibiki (2016) formulate dynamic optimal
execution models with the first-order lower partial moment
(LPM) as a downside risk measure.

Recently, Bouchaud et al. (2006) show that the price
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impact is transient in the real market. In addition, some
studies are addressed under the assumption of transient
market impact. Gatheral et al. (2011) derive the optimal
strategy of minimizing expected cost. Alfonsi et al. (2012)
derive the static optimal strategy in consideration of the
variance of cost, which is the same problem setting as
Almgren and Chriss (2001). Lorenz and Schied (2013)
derive the dynamic optimal strategy. Their admissible
strategy is the sum of a sell and a buy strategy. In contrast,
our admissible execution strategy is a pure sell strategy in
order to meet the execution needs of institutional investors
who get a contract to sell stocks under a target cost.

In our paper, we discuss the dynamic optimization
models with transient impact and downside risk in order to
decide the optimal execution strategy and we formulate the
optimal execution problem in a discrete time. Specifically,
we propose the following three types of the models, based
on Takenobu and Hibiki (2016).

(1) Hybrid multi-period stochastic optimization model
with dynamic execution strategy using Monte Carlo
simulation (called hybrid model hereafter).

(2) Piecewise liner model which is an extended model of
the hybrid model (called piecewise model hereafter).

(3) Iterative model with static execution strategy
We can show the differences among them as in Table 1,

and evaluate the characteristics. We conduct the numerical

analysis, and examine the usefulness of the models.
Table 1: Comparison with three models

Temporary Impact

Model Hybrid Piccewise | Iterative
Conditional decision O O O
Flexibility of decision
A
making O O
Inclusion of practical
X
constraint O O
Computation load very high high low
Constraint of price v A O
process

2. THE OPTIMAL EXECUTION PROBLEM

We set up the problems with reference to Gatheral et
al. (2011) and Alfonsi et al. (2012). We assume that we
hold a block of shares X of a single security which initial
price is Py. We needs to sell a stock in the market by time
horizon T. We divide T into K intervals of lengtht =
T/K. We plan to hold x; shares at time k (k =1,..,K),
and therefore we shall sell x;,_; — x; between k —1 and
k. Average rate of trading during period k£ is vy =

(Xk-1 —x)/T (t=T/K).

2.1 MARKET IMPACT MODEL

Many previous studies have used a temporary /
permanent market impact model. In contrast, we use a
transient market impact model (Figure 1). We define
transient market impact as follow. When tv, shares are
executed at time u — 1, the temporary market impact

thyv, occurs, and then at time k, the temporary market
impact decays to Gy _, 41 (thov,). The decay kernels of the
form, G:[0,00) — [0,1], is defined as follows, with
reference to Alfonsi et al. (2012). We assume G as an
exponential or a power function.
Grusr = exp(—p.(k —u+1D1)  (p. = 0) )]
Growin = A+ Ak —u+ DD (pp,A20) ()
Therefore, the market impact at time k derived from
execution at time u — 1 can be formulated as follow.
MI((k —u+ D7) = thoVyGr_ys1 (3)
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Figure 1: temporary / permanent and transient market

impact

2.2 PRICE DYNAMICS

We assume that price process follows the arithmetic
Brownian motion. So, the evolution of the fundamental
price P, and execution price P, considering market
impact can be formulation as follow.

k k
P, =Py +0-\/?qu _TZhOVqu—u+1 “4)
_ u=1 u=1
Py = Py_1 — Thovy (5)

We represent the random price change as o1&, using
daily standard deviation, o, and uncertain fluctuations in
period [u—1,u], §,~N(0,1).

2.3 DEFINITION OF EXECUTION COST

We evaluate the total cost of trading, or
implementation shortfall, for selling the amount of security
which is the difference between the initial market value and
the final capture of the trade derived using trading policy.
It is expressed as

Ck =XPy— YK _(x¢1—x )P, , which s
nondimensionalized by dividing by ovTX, like Lorenz and
Almgren (2011).

K k
Co= 1K D" G Ris = %) Ry — 2

k=1u=1
_G\EZ $i X (6)
k=1
Hn= (hoX/K)/(oVT) ™

where, Cyx = (1/0VTX)Cy, % = (1/X)x, and p, is
called “market power” which is a non-dimensional



preference-free measure of portfolio size in terms of its
ability to move the market, identified by Almgren and
Lorenz (2007). The second and third terms of Equation (6)
show the market impact cost, and timing risk, respectively.
Hereafter, we remove caret for simplicity

2.4 STATE-INDEPENDENT MODEL (N1
MODEL)

We formulate state-independent model with downside
risk (called N1 model) with reference to Alfonsi et al
(2012). We use the first-order lower partial moment (LPM)
as risk measure which is expected value of total cost Cy
beyond target cost C;. The LPM can be formulated using
expected cost Cx and variance of cost o2, as follows.

[ee]

LPM(Cy)= | (Cx —Co)f(Cx)dCy
Cg

=0cP(Q) + 5cQ2(Q) (3
i K k )
Cx= llth Z G-y (Xg—1 — %) (X1 — Xy)
k=1u=
1 K-1 T (10)
Oc= E XIZ(

k=1
where ¢(-) and ®(-) represent density function and
cumulative distribution function of standard normal
distribution respectively, and Q = (Cx — C;)/0c.
We formulate the N1 model minimizing the objective
function which is the expected total cost plus LPM
multiplied by risk aversion y as follows.

minimize Cy +y - LPM(Cy) (11)

subjectto 1=2x; =2x, =2 2x,_1 =0 (12)

3. DYNAMIC OPTIMAL EXECUTION MODELS
We propose three kinds of models; hybrid model,
piecewise model, and iterative model.

3.1 HYBRID MODEL
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Figure 2: Hybrid model structures

The hybrid model allows conditional decisions to be
made for similar states bundled at each time using samples

returns generated by the Monte Carlo method, suggested by
Hibiki (2006). We bundle samples according to the total
cost, and the same decisions are made in similar states. As a
sample of hybrid model, we depict the N2 model of four
periods which have two nodes and four sample paths in
Figure 2.

3.1.1 FORMULATION

We formulate hybrid NS (S is the number of nodes)
model for the optimal execution problem as follow.
(1) Notations
a) Parameters
J: number of sample paths (j =1,...,J)
K: number of periods (k =1, ...,K)
S: number of nodes (s =1,...,5)
El(g) : random price change on path j at time k.
Upn: market power
y: risk aversion coefficient
C;: target cost
b) Variables
x,: residual fraction of order held at time 1, determine
d at time 0
yi: residual fraction of order held on node s at time
k
q¥: deviation of total cost Cx beyond Cg on path j
x,?): residual fraction of order held on path j at time
C]g) . cumulative cost on path j up to time k
LPM(Cy): first-order lower partial moment of total cost
(2) Formulation

]
1 .
Minimize —Z c9 + yLPM(Co) (13)
] &
subject to
k
C,E]) = Clgj—)l + K Z Gk—u(xl(cj—)l - x}E]))(qu—)l - xij))
u=1
R TAL (14)
(Céj) = O,xéj) = 1,xfj) = xl,x,((j) =0)
P —q< ¢, (15)
1 ]
LPM(Cy) = TZ q¥ (16)
j=1
g =0 (17)
<0l (18)
P >0 (19)
{}’11 (6151—)1 = 911—1)
P = !y,ﬁ (i < ¢ < 63,) (20)

A ()
Equation (14) is the calculation of total cost at time k.



Equations (15) to (17) are used for the calculation of LPM.
Equations (18) and (19) are the constraints of non-
increasing in time for residual fractions. Equation (20)
shows the residual fraction of order x,gj ), which is the step
function of cumulative cost C{”, , and the residual fraction
of order on node s, yj, are determined. 6;_; are portioned
points of €Y, on node s. Conditional decisions are

allowed to be made in the model.

3.1.2 OPTIMAL EXECUTION STRATEGY AND
STEP FUNCTION

We estimate a step function through numerical
analysis of hybrid model with many nodes. We set the
following parameters;] = 50,000, K=6, S=25, C; =
0.3. We assume transient market impact as exponential
function, p, = 0.3, (Equation (1)). We derive dynamic
optimal execution strategy using N25 model for four cases

Residual fraction of order

o o

o

Residual fraction of order
o

(Table 2).
Table 2: Parameters for four cases
Parameter | Basic case Case 1 Case 2 Case 3
y 1 10 1 1
Un 0.1 0.1 0.2 0.1
Cg 0.3 0.3 0.3 0.05
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Figure 3: Dynamic optimal execution strategy in each case

We show dynamic optimal execution strategy in
Figure 3. The optimal residual orders are state-dependent,
and become almost short-butterfly forms which consist of
V-shaped part and flatter parts, with respect to the
cumulative cost. The result is consistent with Takenobu and
Hibiki(2016) even in consideration of transient market
impact. As the cumulative cost becomes close to the kinked
point, the chance of risk becomes large. Therefore,
market impact is tolerated and the amount of residual order
becomes small in order to avoid the increase in timing risk
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which is difficult to control. On the other hand, the
residual order becomes large in order to have a chance of
reducing the total cost by the rise in the stock price as the
cumulative cost becomes larger than the kinked point. We
need the large number of nodes in order to express the
short-butterfly form using the step function in the hybrid
model. This leads to the large-scale optimization problem
and the increase in the computation time. Therefore, we
propose the piecewise linear model with transient market
impact as well as Takenobu and Hibiki (2016). It is
expected that the computation time is reduced due to the
piecewise linear approximation. In addition, we also
propose to solve the problem with a static model iteratively
to reduce the computation time drastically.

3.2 PIECEWISE LINEAR MODEL

Cumulative cost to the minimum fraction needs to be
given in the piecewise linear model before solving the
problem. But, it is difficult to determine it because we
cannot find it without solving the problem using the hybrid
model. In our paper, we determine it as C; — A, — By ,
“target cost minus the sum of expected cumulative cost
after time k& and risk adjusted term” derived by using the
one-period analytical model formulated under the limited
assumption.

A= Cg = Cyyq 21
By = bpx™mu* (22)
(23)

. p’) (24)

YTy - o)

where x™" is residual fraction of order in the kinked

point. Due to space limitation, we omit the explanation of
the analytical model.

A y -
O *P

Hybrid model

Piecewise model

. |
P U P : Lo,

1 2 3 5 1 2 3 4 5
Ok-1 Ok1 Ofq Ofy 01 k-1 Oje1 031 634 k-1

Figure 4: Extension to piecewise model

We formulate the piecewise model (PS model, S is
the number of ranges) which is extended from the hybrid
model. We also use the parameters and variables defined
section 3.1.1. The formulation of the piecewise model is



basically the sar(ng as that of the hybrid model except the
j

calculation of x,’” as follows.
(YI% (C}Ei—)1 s 91%—1)
X = { (1-a@)yi +alyi (0 <cdi<6i,) (29)
i (¢, = 681)
& = 72’9) - Z"l (26)
k-1~ Yk-1

We can decide the optimal residual orders smoothly
according to Equation (25). It is expected that the similar
optimal execution strategy can be derived using the
piecewise linear model with a smaller number of ranges
than the hybrid model.

3.3 ITERATIVE MODEL

We formulate the iterative model to reduce the
computation time. It can derive the state-dependent
decisions approximately to the piecewise model.

Consider the problem of solving for x;. Given
Cr—, and xj_,, the expected total cost Cy and variance
of total cost are formulated using residual orders after time
k, x4 d=k+1,..,K—1),as follows.

K d
Ck = Cx—1 + unK Z Z Gr—u(Xqg-1 — %q) (Xu1 — x3,) 27)

d=k u=1

K-1

> xd (28)
a=k

LPM is calculated by Equation (8), and we derive x; by

minimizing the objective  function, f(x,) = Cx +
yYLPM (Cy), as follows.

oé=

x| =

a; _ bgh(w)

a; ™ 2ua; @9
where u is expressed by Cp_; and x, . In addition,
a; and a, can be expressed by x,_;, but they are
independent of x; . Equation (29) cannot be solved
analytically, but we obtain x; numerically. Specifically,
we give the optimal residual order of time k — 1 derived
by the NI model as the parameter x,_;, and obtain x;
satisfying the Equation (29). The state-dependent residual
orders can be derived approximately by implementing the
procedure iteratively through the planning period.

4. NUMERICAL ANALYSIS

We derive optimal execution strategy with piecewise
model and iterative model using hypothetical data in order
to compare the results of hybrid model, and conduct the
sensitivity analysis in order to examine the usefulness of
the models. All of the problems are solved using Numerical
Optimizer (Ver 18.1) — mathematical programming
software package developed by NTT DATA Mathematical
System, Inc. on Windows 10 personal computer which has
Corei7-6700K, 4.00GHz CPU and 32GB memory.

4.1 SETTING
(1) Parameters of basic case.

K =6,] =50,000,C; =03,y =1,u, =0.1,p, = 3.
(2) How to classify paths

In the hybrid and piecewise models, we set eight kinds
of § (=2,4,6,8,12,16,20,24) and the same number of
ranges at each time. In the hybrid model, the same number
of paths included in each range (J/S). In the piecewise
model, the number of division is symmetric about the
kinked point which is the cumulative cost to the minimum
fraction (C; — A — By,) estimated in section 3.2.

4.2 BASIC ANALYSIS
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Figure 6: Objective function values for different number of
divisions

We show optimal execution strategies on Figure 5
derived by piecewise model and iterative model in the basic
case. In comparison with basic case in Figure 3, similar
strategies can be derived. In addition, we show the
objective function values for different number of divisions
in Figure 6. When S =1, hybrid model and piecewise
model is equivalent to the N1 model, and since iterative
model determines the residual orders for each path, we
describe fixed value. Comparing N16 and P6 models or
N24 and P8 models which have the similar objective
function values, the computation time can be reduced to
about 30%.

4.3 SENSITIVITY ANALYSIS

In order to examine whether piecewise model and
iterative model can derive results similar to hybrid model
even when the market environment changes, we depict the
error from the objective function value derived by N24
model for different parameters of u, y, or p, in Figure 7.



We find that piecewise model and iterative model are close
to the hybrid model in any market condition. Furthermore,
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the piecewise model is more accurate than the iterative
model and robust against changes in the market condition.
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Figure 7: Sensitivity analysis for each model (P8, Iterative, and N1 model) for various py, y, or p,

5. ANALYSIS OF MARKET DATA

We estimate the market impact function and other
parameters using market data, and derive the optimal
execution strategies for practical use. Especially, we
estimate temporary market coefficient h,, daily standard
deviation ¢ in order to calculation market power p;, and
transient market impact function G. We use the 2012 tick
data to estimate the parameters. We estimate o and h, as
“Realized Volatility” and “spread over best bid quality”
before day of execution. G is estimated with reference to
Bouchaud et al. (2006).

Table 3: estimated parameters using market data

Parameter Softbank (9984) Docomo (9437)
Py 3140 yen 130,000 yen
o 26.68 yen 624 yen
ho 2.5x 1075 yen 0.23 yen
Gy (1+7211d -1)7%3%2 | (1 + 1.76d - 7)7%%°

Yen  ®X=400,000 M X=800,000 M X=4000 M X=8000
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Figure 8: Difference of objective function values from
P8 model for each execution strategy

Softbank (9984) and Docomo (9437), which are
largescale stocks listed with first section of the Tokyo Stock
Exchange, are supposed to be executed and the estimated
parameters are shown in the Table 3. Decay speed of
transient market impact of Softbank is fast and Docomo is
slow. We derive optimal execution strategy using the
proposed models (N25 model, P8 model, Iterative model)
and comparative model (Execution strategy of trading in
equal size lots, N1 model, piecewise model with temporary
/ permanent market impact proposed by Takenobu and

Hibiki (2016)) and compare the objective function values

-20000 N25 Iterative N1 model Equal size Takenobu
model  model and Hibiki

with that of P8 model in Figure 8. The objective function
values of the proposed three kinds models are smaller than
the others (N1 model, trading in equal size, and Takenobu
and Hibiki model). Therefore, we find the proposed models
are useful in practice.

6. CONCLUSION

We propose different three types of models, hybrid
model, piecewise model, and iterative model, as dynamic
optimal execution model, and show the characteristics and
usefulness of each model through the state-dependent
strategy using hypothetical data and real market data.
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