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Abstract. When institutional investors trade a large amount of a stock in the market, the trading amount might 

impact the price, and the price change is called market impact. In addition, their trading is always exposed to 

uncertain price change, which is called timing risk. They need to evaluate quantitatively market impact and timing 

risk, and decide optimal execution strategy in consideration of the trade-off between them. Many previous studies 

assume temporary / permanent market impact, but recently some studies are discussed under the assumption of 

transient market impact. On the other hand, institutional investors need to manage the downside risk when they 

execute the order to meet the trading needs within the target cost. In our paper, we discuss the dynamic optimization 

models with transient market impact and downside risk in order to decide the optimal execution strategy. 

Specifically, we propose the following three types of the models, based on Takenobu and Hibiki (2016) which 

assume temporary / permanent market impact. 

(1) Hybrid multi-period stochastic optimization model using Monte Carlo simulation. 

(2) Piecewise liner approximation model based on the hybrid model 

(3) Iterative model with static execution strategy 

We solve the optimal execution problems using the models, and conduct the sensitivity analysis in order to examine 

the usefulness of the models. In addition, we compare three models, and evaluate the characteristics and the 

difference among them. We estimate the market impact function and other parameters using market data, and derive 

the optimal execution strategies for practical use. 
 

Keywords: dynamic optimal execution, transient market impact, market order, downside risk 

 

 

1. INTRODUCTION 
When institutional investors trade a large amount of a 

stock in the market, the trading amount might impact the 

price, and the price change is called market impact. In 

addition, their trading is always exposed to uncertain price 

change, which is called timing risk. They need to evaluate 

quantitatively market impact and timing risk, and decide 

optimal execution strategy in consideration of the trade-off 

between them. Many previous studies assume temporary / 

permanent market impact. Bertsimas and Lo (1998) derive 

the optimal strategy of minimizing expected cost which 

assumes implicitly an investor is risk neutral. Almgren and 

Chriss (2001) derive the static optimal strategy using the 

variance of cost as market timing risk measure. They use 

the variance of total cost as a risk measure.  On the other 

hand, institutional investors need to manage the downside 

risk when they execute the order to meet the trading needs 

within the target cost.  In addition, the investors develop 

the dynamic execution strategy in consideration of the price 

impact cost and market timing risk appropriately.   

Takenobu and Hibiki (2016) formulate dynamic optimal 

execution models with the first-order lower partial moment 

(LPM) as a downside risk measure. 

Recently, Bouchaud et al. (2006) show that the price 
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impact is transient in the real market.  In addition, some 

studies are addressed under the assumption of transient 

market impact. Gatheral et al. (2011) derive the optimal 

strategy of minimizing expected cost. Alfonsi et al. (2012) 

derive the static optimal strategy in consideration of the 

variance of cost, which is the same problem setting as 

Almgren and Chriss (2001).  Lorenz and Schied (2013) 

derive the dynamic optimal strategy. Their admissible 

strategy is the sum of a sell and a buy strategy.  In contrast, 

our admissible execution strategy is a pure sell strategy in 

order to meet the execution needs of institutional investors 

who get a contract to sell stocks under a target cost. 

In our paper, we discuss the dynamic optimization 

models with transient impact and downside risk in order to 

decide the optimal execution strategy and we formulate the 

optimal execution problem in a discrete time. Specifically, 

we propose the following three types of the models, based 

on Takenobu and Hibiki (2016). 

(1) Hybrid multi-period stochastic optimization model 

with dynamic execution strategy using Monte Carlo 

simulation (called hybrid model hereafter). 

(2) Piecewise liner model which is an extended model of 

the hybrid model (called piecewise model hereafter). 

(3) Iterative model with static execution strategy 

We can show the differences among them as in Table 1, 

and evaluate the characteristics. We conduct the numerical 

analysis, and examine the usefulness of the models. 

Table 1: Comparison with three models 

Model Hybrid Piecewise Iterative 

Conditional decision ○ ○ ○ 

Flexibility of decision 

making 
△ ○ ○ 

Inclusion of practical 

constraint 
○ ○ × 

Computation load very high high low 

Constraint of price 

process 
× △ ○ 

     

2. THE OPTIMAL EXECUTION PROBLEM 
We set up the problems with reference to Gatheral et 

al. (2011) and Alfonsi et al. (2012). We assume that we 

hold a block of shares 𝑋 of a single security which initial 

price is 𝑃0.  We needs to sell a stock in the market by time 

horizon 𝑇.  We divide T into K intervals of length 𝜏 =
𝑇/𝐾. We plan to hold 𝑥𝑘 shares at time 𝑘 (𝑘 = 1, . . , 𝐾), 

and therefore we shall sell 𝑥𝑘−1 − 𝑥𝑘  between 𝑘 − 1 and 

𝑘 .  Average rate of trading during period k is νk =
(𝑥𝑘−1 − 𝑥𝑘)/𝜏 (𝜏 = 𝑇/𝐾). 

 

2.1 MARKET IMPACT MODEL 
Many previous studies have used a temporary / 

permanent market impact model. In contrast, we use a 

transient market impact model (Figure 1). We define 

transient market impact as follow. When 𝜏𝜈𝑢 shares are 

executed at time  𝑢 − 1 , the temporary market impact 

𝜏ℎ0𝜈𝑢 occurs, and then at time 𝑘, the temporary market 

impact decays to 𝐺𝑘−𝑢+1(𝜏ℎ0𝜈𝑢). The decay kernels of the 

form, 𝐺: [0,∞)  → [0,1] , is defined as follows, with 

reference to Alfonsi et al. (2012). We assume 𝐺 as an 

exponential or a power function. 

𝐺𝑘−𝑢+1 = 𝑒𝑥𝑝(−𝜌𝑒(𝑘 − 𝑢 + 1)𝜏) (𝜌𝑒 ≥ 0) (1) 

𝐺𝑘−𝑢+1 = (1 + 𝜆(𝑘 − 𝑢 + 1)𝜏)−𝜌𝑝  (𝜌𝑝, 𝜆 ≥ 0) (2) 

    Therefore, the market impact at time k derived from 

execution at time u − 1 can be formulated as follow. 

𝑀𝐼((𝑘 − 𝑢 + 1)𝜏) = 𝜏ℎ0𝜈𝑢𝐺𝑘−𝑢+1 (3) 

 

  

 

 

 

 

 

 

 

 

Figure 1: temporary / permanent and transient market 

impact 

 

2.2 PRICE DYNAMICS 
We assume that price process follows the arithmetic 

Brownian motion. So, the evolution of the fundamental 

price 𝑃𝑘  and execution price �̃�𝑘  considering market 

impact can be formulation as follow. 

𝑃𝑘 = 𝑃0 + 𝜎√𝜏∑𝜉𝑢

𝑘

𝑢=1

− 𝜏∑ℎ0𝜈𝑢𝐺𝑘−𝑢+1

𝑘

𝑢=1

 (4) 

�̃�𝑘 = 𝑃𝑘−1 − 𝜏ℎ0𝜈𝑘 (5) 

We represent the random price change as 𝜎√𝜏𝜉𝑢  using 

daily standard deviation, 𝜎, and uncertain fluctuations in 

period [u − 1, u], ξu~N(0,1). 
 

2.3 DEFINITION OF EXECUTION COST 
We evaluate the total cost of trading, or 

implementation shortfall, for selling the amount of security 

which is the difference between the initial market value and 

the final capture of the trade derived using trading policy.  

It is expressed as  

𝐶𝐾 = 𝑋𝑃0 −∑ (𝑥𝑘−1 − 𝑥𝑘)
𝐾
𝑘=1 �̃�𝑘  , which is 

nondimensionalized by dividing by σ√𝑇𝑋, like Lorenz and 

Almgren (2011).  

�̂�𝐾 = 𝜇ℎ𝐾∑∑𝐺𝑘−𝑢(�̂�𝑘−1 − �̂�𝑘)(�̂�𝑢−1 − �̂�𝑢)

𝑘

𝑢=1

𝐾

𝑘=1

  

 

  −σ√𝜏∑ 𝜉𝑘�̂�𝑘

𝐾−1

𝑘=1

 (6) 

𝜇ℎ = (ℎ0𝑋/𝐾)/(𝜎√𝑇) 
(7) 

where, �̂�𝐾 = (1/𝜎√𝑇𝑋)𝐶𝐾 , �̂�𝑘 = (1/𝑋)𝑥𝑘 , and 𝜇ℎ  is 

called “market power” which is a non-dimensional 
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preference-free measure of portfolio size in terms of its 

ability to move the market, identified by Almgren and 

Lorenz (2007). The second and third terms of Equation (6) 

show the market impact cost, and timing risk, respectively. 

Hereafter, we remove caret for simplicity 

 

2.4 STATE-INDEPENDENT MODEL (N1 
MODEL) 
    We formulate state-independent model with downside 

risk (called N1 model) with reference to Alfonsi et al. 

(2012). We use the first-order lower partial moment (LPM) 

as risk measure which is expected value of total cost 𝐶𝐾 

beyond target cost 𝐶𝐺. The LPM can be formulated using 

expected cost 𝐶�̅� and variance of cost σ𝐶
2 , as follows. 

𝐿𝑃𝑀(𝐶�̅�) = ∫ (𝐶𝐾 − 𝐶𝐺)𝑓(𝐶𝐾)𝑑𝐶𝐾

∞

𝐶𝐺

 
 

 = 𝜎𝐶𝜙(𝑄) + 𝜎𝐶𝑄𝛷(𝑄) (8) 

𝐶�̅� = 𝜇ℎ𝐾∑∑𝐺𝑘−𝑢(𝑥𝑘−1 − 𝑥𝑘)(𝑥𝑢−1 − 𝑥𝑢)

𝑘

𝑢=1

𝐾

𝑘=1

 

(9) 

𝜎𝐶 =
1

𝐾
∑𝑥𝐾

2

𝐾−1

𝑘=1

 

(10) 

where ϕ(⋅)  and Φ(⋅)  represent density function and 

cumulative distribution function of standard normal 

distribution respectively, and Q = (𝐶�̅� − 𝐶𝐺)/𝜎𝐶 . 

    We formulate the N1 model minimizing the objective 

function which is the expected total cost plus LPM 

multiplied by risk aversion γ as follows. 

minimize 𝐶�̅� + 𝛾 ⋅ 𝐿𝑃𝑀(𝐶�̅�) (11) 

subject to 1 ≥ 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝐾−1 ≥ 0 (12) 

  

3. DYNAMIC OPTIMAL EXECUTION MODELS 
   We propose three kinds of models; hybrid model, 

piecewise model, and iterative model.  

 

3.1 HYBRID MODEL 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Hybrid model structures 

 

The hybrid model allows conditional decisions to be 

made for similar states bundled at each time using samples 

returns generated by the Monte Carlo method, suggested by 

Hibiki (2006). We bundle samples according to the total 

cost, and the same decisions are made in similar states. As a 

sample of hybrid model, we depict the N2 model of four 

periods which have two nodes and four sample paths in 

Figure 2. 

 

3.1.1 FORMULATION 
We formulate hybrid NS (S is the number of nodes) 

model for the optimal execution problem as follow. 

(1) Notations 

a) Parameters 

𝐽: number of sample paths (𝑗 = 1,… , 𝐽) 
𝐾: number of periods (𝑘 = 1,… , 𝐾) 
S: number of nodes (𝑠 = 1,… , 𝑆) 
ξk
(𝑗)

: random price change on path 𝑗 at time 𝑘. 

𝜇ℎ: market power 

𝛾: risk aversion coefficient 

𝐶𝐺: target cost 

b) Variables 

𝑥1: residual fraction of order held at time 1, determine

d at time 0 

𝑦𝑘
𝑠: residual fraction of order held on node s at time 

k 

𝑞(𝑗): deviation of total cost 𝐶𝐾 beyond CG on path 𝑗 
𝑥𝑘
(𝑗)

: residual fraction of order held on path 𝑗 at time 

𝑘 

Ck
(𝑗)

: cumulative cost on path 𝑗 up to time 𝑘 

𝐿𝑃𝑀(𝐶𝐾): first-order lower partial moment of total cost 

(2) Formulation 

Minimize 
1

𝐽
∑𝐶𝐾

(𝑗)

𝐽

𝑗=1

+ 𝛾𝐿𝑃𝑀(𝐶𝐾) (13) 

subject to   

𝐶𝑘
(𝑗)

 = 𝐶𝑘−1
(𝑗)

+ 𝜇ℎ𝐾∑𝐺𝑘−𝑢(𝑥𝑘−1
(𝑗)

− 𝑥𝑘
(𝑗)
)(𝑥𝑢−1

(𝑗)
− 𝑥𝑢

(𝑗)
)

𝑘

𝑢=1

 
 

   −𝑥𝑘
(𝑗)
𝜉𝑘
(𝑗)
/√𝐾 (14) 

      (𝐶0
(𝑗)

= 0, 𝑥0
(𝑗)

= 1, 𝑥1
(𝑗)

= 𝑥1, 𝑥𝐾
(𝑗)

= 0)  

𝐶𝐾
(𝑗)

− 𝑞(𝑗) ≤ 𝐶𝐺 (15) 

𝐿𝑃𝑀(𝐶𝐾) =
1

J
∑𝑞(𝑗)

𝐽

𝑗=1

 (16) 

𝑞(𝑗) ≥ 0 (17) 

𝑥𝑘
(𝑗)

 ≤ 𝑥𝑘−1
(𝑗)

 (18) 

𝑥𝐾−1
(𝑗)

 ≥ 0 (19) 

𝑥𝑘
(𝑗)

 =

{
 
 

 
 𝑦𝑘

1    (𝐶𝑘−1
(𝑗)

≤ 𝜃𝑘−1
1 )

𝑦𝑘
𝑠    (𝜃𝑘−1

𝑠−1 ≤ 𝐶𝑘−1
(𝑗)

≤ 𝜃𝑘−1
𝑠 )

𝑦𝑘
𝑆    (𝐶𝑘−1

(𝑗)
≥ 𝜃𝑘−1

𝑆−1)

 (20) 

Equation (14) is the calculation of total cost at time 𝑘. 

 

Time

0 1 2 3 4

0
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Equations (15) to (17) are used for the calculation of LPM. 

Equations (18) and (19) are the constraints of non-

increasing in time for residual fractions. Equation (20) 

shows the residual fraction of order 𝑥𝑘
(𝑗)

, which is the step 

function of cumulative cost Ck−1
(𝑗)

 , and the residual fraction 

of order on node s, 𝑦𝑘
𝑠, are determined. 𝜃𝑘−1

𝑠  are portioned 

points of Ck−1
(𝑗)

 on node 𝑠 . Conditional decisions are 

allowed to be made in the model. 

 

3.1.2 OPTIMAL EXECUTION STRATEGY AND 
STEP FUNCTION 

 

We estimate a step function through numerical 

analysis of hybrid model with many nodes. We set the 

following parameters; J = 50,000 ,  K = 6 , S = 25 , CG =
0.3. We assume transient market impact as exponential 

function, ρe = 0.3 , (Equation (1)). We derive dynamic 

optimal execution strategy using N25 model for four cases 

(Table 2). 

Table 2: Parameters for four cases 

Parameter Basic case Case 1 Case 2 Case 3 

𝛾 1 10 1 1 

𝜇ℎ 0.1 0.1 0.2 0.1 

𝐶𝐺 0.3 0.3 0.3 0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Dynamic optimal execution strategy in each case 

 

    We show dynamic optimal execution strategy in 

Figure 3. The optimal residual orders are state-dependent, 

and become almost short-butterfly forms which consist of 

V-shaped part and flatter parts, with respect to the 

cumulative cost. The result is consistent with Takenobu and 

Hibiki(2016) even in consideration of transient market 

impact. As the cumulative cost becomes close to the kinked 

point, the chance of risk becomes large.  Therefore, 

market impact is tolerated and the amount of residual order 

becomes small in order to avoid the increase in timing risk 

which is difficult to control.  On the other hand, the 

residual order becomes large in order to have a chance of 

reducing the total cost by the rise in the stock price as the 

cumulative cost becomes larger than the kinked point.  We 

need the large number of nodes in order to express the 

short-butterfly form using the step function in the hybrid 

model.  This leads to the large-scale optimization problem 

and the increase in the computation time.  Therefore, we 

propose the piecewise linear model with transient market 

impact as well as Takenobu and Hibiki (2016). It is 

expected that the computation time is reduced due to the 

piecewise linear approximation. In addition, we also 

propose to solve the problem with a static model iteratively 

to reduce the computation time drastically. 

 

3.2 PIECEWISE LINEAR MODEL 
 

Cumulative cost to the minimum fraction needs to be 

given in the piecewise linear model before solving the 

problem. But, it is difficult to determine it because we 

cannot find it without solving the problem using the hybrid 

model. In our paper, we determine it as CG − 𝐴𝑘 − 𝐵𝑘  , 

“target cost minus the sum of expected cumulative cost 

after time k and risk adjusted term” derived by using the 

one-period analytical model formulated under the limited 

assumption.  

𝐴𝑘 = 𝐶�̅� − 𝐶�̅�−1 (21) 

𝐵𝑘 = 𝑏𝑘𝑥𝑘
𝑚𝑖𝑛𝑢∗ (22) 

𝑏𝑘 =
1

𝑥𝑘
𝑚𝑖𝑛

√
1

𝐾
∑(𝑥𝑑

𝑚𝑖𝑛)
2

𝐾−1

𝑑=𝑘

 (23) 

𝑢∗ =
𝜙(𝑢∗)

1 + 1/𝛾 − 𝛷(𝑢∗)
 (24) 

where 𝑥𝑘
𝑚𝑖𝑛  is residual fraction of order in the kinked 

point.  Due to space limitation, we omit the explanation of 

the analytical model. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Extension to piecewise model 

 

We formulate the piecewise model (PS model, S is 

the number of ranges) which is extended from the hybrid 

model. We also use the parameters and variables defined 

section 3.1.1. The formulation of the piecewise model is 
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basically the same as that of the hybrid model except the 

calculation of 𝑥𝑘
(𝑗)

 as follows. 

𝑥𝑘
(𝑗)

 =

{
 
 

 
 𝑦𝑘

1    (𝐶𝑘−1
(𝑗)

≤ 𝜃𝑘−1
1 )

(1 − 𝛼𝑘
(𝑗)
) 𝑦𝑘

𝑠−1 + 𝛼𝑘
(𝑗)
𝑦𝑘
𝑠     (𝜃𝑘−1

𝑠−1 ≤ 𝐶𝑘−1
(𝑗)

≤ 𝜃𝑘−1
𝑠 )

𝑦𝑘
𝑆   (𝐶𝑘−1

(𝑗)
≥ 𝜃𝑘−1

𝑆−1)

 (25) 

𝛼𝑘
(𝑗)

 =
𝐶𝑘−1
(𝑗)

− 𝜃𝑘−1
𝑠−1

𝜃𝑘−1
𝑠 − 𝜃𝑘−1

𝑠−1 (26) 

    We can decide the optimal residual orders smoothly 

according to Equation (25). It is expected that the similar 

optimal execution strategy can be derived using the 

piecewise linear model with a smaller number of ranges 

than the hybrid model. 

 

3.3 ITERATIVE MODEL 
We formulate the iterative model to reduce the 

computation time.  It can derive the state-dependent 

decisions approximately to the piecewise model. 

Consider the problem of solving for 𝑥𝑘 . Given 

𝐶𝑘−1 and 𝑥𝑘−1, the expected total cost  𝐶�̅� and variance 

of total cost are formulated using residual orders after time 

𝑘, 𝑥𝑑 (𝑑 = 𝑘 + 1,… , 𝐾 − 1), as follows. 

𝐶�̅� = 𝐶𝑘−1 + 𝜇ℎ𝐾∑ ∑𝐺𝑘−𝑢(𝑥𝑑−1 − 𝑥𝑑)(𝑥𝑢−1 − 𝑥𝑢)

𝑑

𝑢=1

𝐾

𝑑=𝑘

 (27) 

 

𝜎𝐶
2 =

1

𝐾
∑ 𝑥𝑑

2

𝐾−1

𝑑=𝑘

 (28) 

 

LPM is calculated by Equation (8), and we derive 𝑥𝑘 by 

minimizing the objective function, 𝑓(𝑥𝑘) = 𝐶�̅� +
𝛾𝐿𝑃𝑀(𝐶�̅�), as follows. 

𝑎1
𝑎2

− 𝑥𝑘 =
𝑏𝑘ℎ(𝑢)

2𝜇ℎ𝐾𝑎2
 , (29) 

where  𝑢 is expressed by 𝐶𝑘−1  and 𝑥𝑘 . In addition, 

𝑎1 and 𝑎2  can be expressed by 𝑥𝑘−1 , but they are 

independent of 𝑥𝑘 . Equation (29) cannot be solved 

analytically, but we obtain 𝑥𝑘  numerically. Specifically, 

we give the optimal residual order of time 𝑘 − 1 derived 

by the N1 model as the parameter 𝑥𝑘−1, and obtain 𝑥𝑘 

satisfying the Equation (29). The state-dependent residual 

orders can be derived approximately by implementing the 

procedure iteratively through the planning period. 

 

4. NUMERICAL ANALYSIS 
We derive optimal execution strategy with piecewise 

model and iterative model using hypothetical data in order 

to compare the results of hybrid model, and conduct the 

sensitivity analysis in order to examine the usefulness of 

the models. All of the problems are solved using Numerical 

Optimizer (Ver 18.1) — mathematical programming 

software package developed by NTT DATA Mathematical 

System, Inc. on Windows 10 personal computer which has 

Corei7-6700K, 4.00GHz CPU and 32GB memory. 

 

4.1 SETTING 
(1) Parameters of basic case. 

    𝐾 = 6, 𝐽 = 50,000, 𝐶𝐺 = 0.3, 𝛾 = 1, 𝜇ℎ = 0.1, 𝜌𝑒 = 3. 
(2) How to classify paths 

    In the hybrid and piecewise models, we set eight kinds 

of 𝑆  (=2,4,6,8,12,16,20,24) and the same number of 

ranges at each time. In the hybrid model, the same number 

of paths included in each range (𝐽/𝑆). In the piecewise 

model, the number of division is symmetric about the 

kinked point which is the cumulative cost to the minimum 

fraction (𝐶𝐺 − 𝐴𝑘 − 𝐵𝑘) estimated in section 3.2. 

 

4.2 BASIC ANALYSIS 
 

 

 

 

 

 

 

 

Figure 5: Optimal residual orders in each model 

 

 

 

 

 

 

 

 

 

 

Figure 6: Objective function values for different number of 

divisions 

 

We show optimal execution strategies on Figure 5 

derived by piecewise model and iterative model in the basic 

case. In comparison with basic case in Figure 3, similar 

strategies can be derived. In addition, we show the 

objective function values for different number of divisions 

in Figure 6. When 𝑆 = 1, hybrid model and piecewise 

model is equivalent to the N1 model, and since iterative 

model determines the residual orders for each path, we 

describe fixed value. Comparing N16 and P6 models or 

N24 and P8 models which have the similar objective 

function values, the computation time can be reduced to 

about 30%. 

 

4.3 SENSITIVITY ANALYSIS 
In order to examine whether piecewise model and 

iterative model can derive results similar to hybrid model 

even when the market environment changes, we depict the 

error from the objective function value derived by N24 

model for different parameters of 𝜇ℎ, γ, or 𝜌𝑒 in Figure 7. 
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We find that piecewise model and iterative model are close 

to the hybrid model in any market condition. Furthermore, 

the piecewise model is more accurate than the iterative 

model and robust against changes in the market condition.  

 

 

 

 

 

 

 

 

 

Figure 7: Sensitivity analysis for each model (P8, Iterative, and N1 model) for various 𝜇ℎ, γ, or 𝜌𝑒
 

5. ANALYSIS OF MARKET DATA 
 

We estimate the market impact function and other 

parameters using market data, and derive the optimal 

execution strategies for practical use. Especially, we 

estimate temporary market coefficient ℎ0, daily standard 

deviation 𝜎 in order to calculation market power 𝜇ℎ, and 

transient market impact function 𝐺.  We use the 2012 tick 

data to estimate the parameters. We estimate 𝜎 and ℎ0 as 

“Realized Volatility” and “spread over best bid quality” 

before day of execution. 𝐺 is estimated with reference to 

Bouchaud et al. (2006).  

 

Table 3: estimated parameters using market data 

Parameter Softbank (9984) Docomo (9437) 

𝑃0 3140 yen 130,000 yen 

𝜎 26.68 yen 624 yen 

ℎ0 2.5 × 10−  yen 0.23 yen 

𝐺𝑑 (1 + 72.11𝑑 ⋅ 𝜏)−0. 2 (1 + 1.76𝑑 ⋅ 𝜏)−0.09 

 

 

 

 

 

 

 

 

Figure 8: Difference of objective function values from 

P8 model for each execution strategy 

 

Softbank (9984) and Docomo (9437), which are 

largescale stocks listed with first section of the Tokyo Stock 

Exchange, are supposed to be executed and the estimated 

parameters are shown in the Table 3. Decay speed of 

transient market impact of Softbank is fast and Docomo is 

slow. We derive optimal execution strategy using the 

proposed models (N25 model, P8 model, Iterative model) 

and comparative model (Execution strategy of trading in 

equal size lots, N1 model, piecewise model with temporary 

/ permanent market impact proposed by Takenobu and  

 

Hibiki (2016)) and compare the objective function values  

 

with that of P8 model in Figure 8. The objective function 

values of the proposed three kinds models are smaller than 

the others (N1 model, trading in equal size, and Takenobu 

and Hibiki model). Therefore, we find the proposed models 

are useful in practice. 

 

6. CONCLUSION 
 

We propose different three types of models, hybrid 

model, piecewise model, and iterative model, as dynamic 

optimal execution model, and show the characteristics and 

usefulness of each model through the state-dependent 

strategy using hypothetical data and real market data. 
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