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Abstract. Asset allocation strategy is important to manage assets effectively.  In recent years, risk parity strategy 

attracts attention in place of traditional mean-variance approach.  Risk parity portfolio is one of the risk-based 

portfolios, and it equalizes risk contributions across all assets included in the portfolio.  Specifically, the equally-

weighted risk contribution is calculated by decomposing the standard deviation of the portfolio’s return.  In addition, 

some studies propose the tail risk parity strategy which equalizes the risk contribution of downside risk measure 

(Alankar et al., 2012, Boudt et al., 2013), and use conditional value-at-risk (CVaR) as a risk measure.  In this paper, 

we first compare tail risk parity strategies with CVaRs estimated by three kinds of estimation methods (Delta-normal 

method, historical-simulation method, and Monte Carlo method), and examine the characteristics of the risk parity 

portfolios.  We also implement the backtest for eighteen years using the historical data of Nikkei 225, Citi JPGBI 

(Japan government bond index), S&P500, and Citi USGBI.  We find the estimated expect return and distribution affect 

optimal investment ratios and portfolio’s performance, but mutual dependence between assets does not affect them. 
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1. Introduction 
 

Asset allocation strategy is important to manage assets 

effectively. The standard asset allocation model is the mean-

variance model. This model uses expected returns, standard 

deviations and correlations of assets, optimal portfolio is 

uniquely determined to express investor’s risk preference by 

risk aversion. However, mean-variance optimal portfolio’s 

weights are extremely sensitive to the change in parameters, 

especially expected returns. In recent years, many researchers 

have shown interests in the approach of constructing portfolio, 

using risk due to the difficulty of estimating expected returns. 

Many studies attribute the better performance of these risk-

based asset allocation approaches. In particular, risk parity 

portfolio attracts attention among practitioners and researchers.  

The approach equalizes risk contributions which is the 

decomposition of the total risk to each individual asset.  The 

total risk can be the standard deviation of the portfolio return 

across all assets in general. In contrast, some studies propose 

the tail risk parity portfolio which equalizes risk contributions 

of downside risk measure (Alankar et al., 2012, Boudt et al., 

2013).   Few studies examine the effect of choosing risk 

                                            

 
1 CVaR is referred to as tail VaR, expected shortfall, conditional tail expectation. 

measure and how to estimate downside risks. It is important to 

investigate the difference between general risk parity portfolio 

and tail risk parity portfolio. 

In this paper, we construct tail risk parity portfolio using 

conditional value-at-risk(CVaR)1 as downside risk.  At first, 

we compare tail risk parity strategies with CVaRs estimated by 

three kinds of estimation methods (Delta-normal method, 

historical-simulation method, and Monte Carlo method), and 

examine the characteristics of the tail risk parity portfolios. 

Second, we implement the backtest for eighteen years using 

the historical data of Nikkei 225, Citi JPGBI (Japan 

government bond index), S&P500, and Citi USGBI, and we 

discuss the advantage of tail risk parity portfolio. 

 We find that the tail risk parity portfolio outperforms the 

usual risk parity portfolio.  We decompose the difference of 

performance between them into three factors; 1. expected 

return, 2. distribution and 3. mutual dependence. The result 

shows that outperformance attributes to the expected return.  

Examining the distributions other than the normal distribution, 

the absolute return decreases, but the efficiency measure 

increases. The mutual dependence does not affect the 

difference of performance. 
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2. Risk Parity Portfolio 
 

We define each asset’s risk contribution. The most 

commonly used definition is based on Euler’s homogeneous 

function theorem.  It is defined as follows, 

𝑅𝐶𝑖 = 𝑤𝑖

𝜕𝑅(𝑤)

𝜕𝑤𝑖

=
𝜕𝑅(𝑤)

𝜕𝑤𝑖/𝑤𝑖

 (1) 

where 𝑅(𝑤) is portfolio risk, and  𝑤𝑖 is portfolio weight to 

asset i.  Risk contribution is calculated as the sensitivity of 

the change in portfolio risk to the change in each weight.  

We satisfy the following equation. 

𝑅(𝑤) = ∑ 𝑅𝐶𝑖

𝑛

𝑖=1

 (2) 

Equation (2) shows that the total portfolio risk equals the 

sum of each asset risk contribution by Euler’s homogeneous 

function theorem. 

Risk parity strategy utilizes standard deviation of 

portfolio return and equalizes its risk contribution across all 

assets.  Using the method, the portfolio risk can be equally 

diversified to each asset. 

Figure 1 shows portfolio weight and risk contribution for 

minimum variance portfolio, risk parity portfolio and equal 

weight portfolio, respectively. The bond weight and risk 

contribution of the minimum variance portfolio are largely 

composed.  On the other hand, the equally-weighted portfolio 

holds completely well-balanced weights, but the risk 

contribution of stock becomes the largest portion of total risk.  

We have a 96% risk concentration on stock.  

Maillard et al. (2009) show that the risk parity portfolio is 

located between the minimum variance portfolio and the 

equally-weighted portfolio. The risk parity portfolio is well-

balanced between total risk minimization and portfolio 

diversification. 

 
Figure 1: Portfolio weight and risk contribution2 

 

 

                                            

 
2 We calculate the portfolio weight and risk contribution, using monthly data of S&P500 index and Citi USGBI index 

from January 1993 to July 2016. 

3. Tail Risk Parity Portfolio 

3.1 VaR (Value at Risk) 
VaR represents the potential maximum loss on a given 

confidence level α. 

𝑉𝑎𝑅(𝛼) = min
1−𝛼

{𝑉 ∶ P[−rp > 𝑉] ≤ (1 − 𝛼)} (3) 

where 𝑟𝑃  is a portfolio return. 
Risk contribution of VaR can be defined as follows 

(Tasche (2000)), 

𝑅𝐶𝑖
𝑉𝑎𝑅(𝛼)

= 𝑤𝑖  ⋅ 𝐸[−𝑟𝑖  | − 𝑟𝑃 = 𝑉𝑎𝑅(𝛼)] (4) 

where 𝑟𝑖   is a return of i-th asset.  VaR is not coherent risk 

measure because it fails to satisfy the subadditivity.  Yamai 

and Yoshiba (2002) argue that the risk contribution of VaR is 

highly sensitive to the portfolio’s weight, and it is a serious 

problem for practical use. 

3.2 CVaR (Conditional Value at Risk) 
CVaR is defined as the average of the loss beyond the VaR, 

as follows. 

𝐶𝑉𝑎𝑅(𝛼) = 𝐸[−𝑟𝑃  | − 𝑟𝑃 ≥ 𝑉𝑎𝑅(𝛼)] (5) 

Risk contribution of CVaR is defined as follows (Tasche 

(2000)), 

𝑅𝐶𝑖
𝐶𝑉𝑎𝑅(𝛼)

= 𝑤𝑖  ⋅ 𝐸[−𝑟𝑖  | − 𝑟𝑃 ≥ 𝑉𝑎𝑅(𝛼)] (6) 

The CVaR takes into account the maximum loss that is 

worse than the VaR and satisfies subadditivity. According to 

Yamai and Yoshiba (2002), in contrast to VaR, CVaR is 

insensitive to portfolio’s weight. Therefore, we use CVaR as 

downside risk measure to construct tail risk parity portfolio. 

 

3.3 Estimation of CVaR 
We explain the following three methods of estimating 

CVaR. In this paper, we construct tail risk parity portfolio using 

those three kinds of estimation methods, and compare them. 

 

3.3.1 Delta-Normal method 
 It is assumed that asset returns are normally distributed 

in the approach. As the portfolio return is a linear combination 

of normal variables, we can calculate the CVaR of the portfolio 

and risk contribution of asset i as follows 

𝐶𝑉𝑎𝑅(𝛼) = − ∑ 𝑤𝑖𝜇𝑖

𝑛

𝑖=1

+
1

1 − 𝛼
𝜎𝑃𝜙[Φ−1(1 − 𝛼)] (4) 

𝑅𝐶𝑖
𝐶𝑉𝑎𝑅(𝛼)

= −𝑤𝑖𝜇𝑖 

                         +
𝑤𝑖 ∑ 𝜎𝑖𝑗𝑤𝑖

𝑛
𝑗=1

𝜎𝑃

1

1 − 𝛼
𝜙[Φ−1(1 − 𝛼)] 

(5) 

where 𝜎𝑖𝑗 is a covariance between returns of asset i and asset 

j. 𝜎𝑃 denotes standard deviation of the total portfolio returns. 

Φ−1 is a quantile function of the standard normal distribution 
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and 𝜙 is a standard normal density function. This method is 

very practical and easy to use. However, many empirical 

studies show that returns of financial assets do not follow the 

normal distribution and the assumption of normally distributed 

financial returns underestimates VaR and CVaR. 

 

3.3.2 Historical-Simulation method 
This method is a non-parametric approach to estimate 

CVaR based on historical data. The CVaR (and VaR) can be 

calculated using the percentile of the empirical distribution 

corresponding to a given confidence level. This method can be 

applied to the non-normal distributions with heavy tails. 

However, the calculation is sensitive to the abnormal 

observation. This feature is inconvenient for constructing tail 

risk parity portfolio.  Thus, we generate random numbers for 

the distribution which are obtained by kernel smoothing from 

the observed data. Suppose  {𝑥1, 𝑥2, … , 𝑥𝑛}  denotes data 

observations for each asset. Kernel-smoothed cumulative 

distribution function (cdf) is  

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

,  (6) 

where 𝐾(⋅) is a kernel function. It is the empirical distribution.  

Parameter h is the bandwidth or smoothing parameter. It 

controls the smoothness of the estimated cdf. We determine the 

bandwidth using the method of Matt and Jones (1994). We 

employ the Gaussian kernel function which is a commonly 

used. 

𝐾(𝑢) = (2𝜋)−1/2𝑒−𝑢2/2 (7) 

 

Figure 2: Kernel Smoothed functions 

 

3.3.3 Monte Carlo method 
The probability distribution and the dynamics of asset 

                                            

 
3 The DFO method is the non-linear optimization method where the problems are solved without the derivative of the objective 

function.  The type of the problem goes well with the DFO method. We used Numerical Optimizer/DFO added on the 

mathematical programming software package called Numerical Optimizer (ver. 18.1.0) developed by NTT DATA Mathematical 

System, Inc. 
4 The weights of inverse volatility portfolio are calculated as 𝑤𝑖 = 𝜎𝑖/ ∑ 𝜎𝑗

𝑁
𝑗=1 . This portfolio is equal to the risk parity 

portfolio when the correlations between assets are zero. Even if assets are correlated, it is expected that the portfolio takes a close 

value to tail risk parity or risk parity portfolio.  

prices are simulated by generating random samples. It allows 

for any distribution (even non-normal distribution) and non-

linear dependence. We generate random numbers which 

follows GH (Generalized Hyperbolic) distribution, and mutual 

dependence between assets represented by t-Copula. GH 

distribution is flexible enough to express fat tail and 

asymmetry. Copula describes dependence structure between 

each asset and can captures the tail of marginal distributions, 

unlike a linear correlation. We estimate GH distribution and t-

Copula parameters by maximum likelihood method. 

 

3.4 Formulation of asset allocation model with tail 
risk parity 

We build tail risk parity portfolio which equalize all 

asset’s risk contribution of CVaR. The model can be 

formulated as follows, 

1 Sets 

𝐹 ∶ set of foreign assets 

2 Parameters 

𝑁 ∶ number of assets 

𝑑 ∶ risk-free interest rate of Japanese yen 

𝑓 ∶ risk-free interest rate of U.S. dollar 

𝛼 ∶ confidence level of CVaR 

3 Decision variables 

𝑤𝑖 ∶ portfolio weight of asset 𝑖 
 

Minimize ∑ (
𝑅𝐶𝑖

𝐶𝑉𝑎𝑅(𝛼)

𝐶𝑉𝑎𝑅𝑃(𝛼)
−

1

𝑁
)

2𝑁

𝑖=1

 

(8) 
subject to ∑ 𝑤𝑖 + ∑(𝑓 − 𝑑)𝑤𝑗 = 1

𝑗∈𝐹

𝑁

𝑖=1

 

 𝑤𝑖 ≥ 0, 𝑖 ∈ {1,2, … , 𝑁} 

We solve the problem under the perfect hedging strategy 

for foreign assets.  The hedging cost is the difference between 

U.S. and Japanese interest rate. 

Problem (8) is difficult to solve using a commonly used 

mathematical programming tool because the objective 

function is non-convex, and RC and CVaR cannot be also 

expressed with the explicit function of the decision variables.  

Therefore, we used DFO3 (Derivative Free Optimizer) method 

to solve the problem.  However, the problem is dependent on 

an initial value, and then we set inverse volatility portfolio4 as 

the initial portfolio weight. 
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Table 1: Comparisons5 

Case 1 2 3 4 5 6 

Risk measure 

(estimation method of 

CVaR) 

standard 

deviation 

CVaR  

(Delta-Normal 

method) 

CVaR 

(Historical-

Simulation 

method) 

CVaR 

(Monte Carlo 

method) 

CVaR 

(Monte Carlo 

method) 

CVaR 

(Historical-

Simulation 

method) 

Estimation of expected 

return 
No Yes No (μi = 0) No (μi = 0) No (μi = 0) Yes 

Probability distribution normal normal historical GH normal historical 

Mutual dependence 

linear 

correlation 

(=Gaussian 

copula) 

linear 

correlation 

(=Gaussian 

copula) 

Gaussian 

copula 

Gaussian 

copula 
t-copula t-copula 

4. Basic Analysis 
 

We conduct the analysis for two-asset tail risk parity 

portfolio which consists of domestic stock and bond.  We 

employ monthly data from January 1993 to July 2016 for 

Nikkei 225 stock and Citi JPGBI(Japan Government Bond 

Index).  Summary statistics are shown in Table 2. 

We set four kinds of the confidence level; 0.80, 0.85, 0.90, 

0.95.  The number of simulation paths is 20,000. We compare 

six cases in Table 1 in order to examine the difference between 

risk parity and tail risk parity portfolio. 

 

Table 2: Statistics of return on an annual basis 

 stock bond 

Mean 2.04% 3.24% 

Standard deviation 20.20% 3.15% 

Skewness -0.323 -0.363 

Exceed kurtosis 0.517 5.154 

 

4.1 Expected return 
We can construct risk parity portfolio without estimating 

expected returns. Some researchers say that this is one reason 

why risk parity portfolio has better performance than other 

portfolios. However, we need to estimate expected return to 

construct tail risk parity portfolio. Several studies have proved 

that it is difficult to estimate expected return. We pay attention 

to the fact that estimation errors of the expected return may 

affect the optimal portfolio.  In our paper, we calculate 

average return in all period. 

The difference of cases 1 and 2 in Table 1 is dependent on 

the expected return of asset because the CVaR is calculated in 

proportion to the standard deviation.  Therefore, we compare 

the two cases, and examine the effect on the expected return 

for the tail risk parity portfolio. 

 

 

 

 

                                            

 
5 μi = 0 indicates asset return is normalized so that each mean return can be zero. 

Table 3: Comparison of the portfolio weights for the different 

expected returns 

α = 0.80 Case 1 Case 2 

Stock 13.53% 12.19% 

Bond 86.47% 87.81% 

 

Table 3 shows the weights of each portfolio. Expected 

returns are 2.04% for stock and 3.24% for bond. The stock 

weight of tail risk parity portfolio is less than that of risk parity 

portfolio.  The reason is that the asset with relatively higher 

expected return is allocated more in the tail risk parity portfolio. 

In addition, we find the difference tends to decrease as the 

confidence level becomes higher. 

 

4.2 Distribution 
We examine the effect on the distribution to compare case 

1 and case 3(Historical-Simulation method) or case 4(Monte 

Carlo method) in Table 1. 

 

Table 4: Comparison for the different distribution  

α = 0.80 Case 1 Case 3 Case 4 

Stock 13.53% 12.59% 12.49% 

Bond 86.47% 87.41% 87.51% 

α = 0.95 Case 1 Case 3 Case 4 

Stock 13.53% 14.37% 13.75% 

Bond 86.47% 85.63% 86.25% 

 

Table 4 shows the weights of each portfolio in 0.80 and 

0.95 confidence levels, respectively. Bond has lower skewness 

and higher kurtosis than stock.  

According to cases 3 and 4, the weight of bond in tail risk 

parity portfolio decreases as the confidence level becomes 

higher.  Examining the relationship between confidence level 

and distribution is our future task. 

 

4.3 Mutual dependence 
Describing the mutual dependence, non-linear correlation 

can be involved in the tail risk parity portfolio whereas  
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Figure 3: Weight of risk parity portfolio              Figure 4: Expected return(α = 0.80) 

 

Figure 5: Historical distribution (α = 0.95)           Figure 6: GH distribution (α = 0.80) 

Table 7: Backtest return on an annual basis 

Case (See Table 1) 1 2 3 4 5 6 

Mean 3.259% 3.296% 3.248% 3.205% 3.245% 3.272% 

Standard deviation 2.683% 2.633% 2.657% 2.655% 2.677% 2.610% 

Skewness -0.604 -0.544 -0.577 -0.673 -0.601 -0.548 

Exceed kurtosis 2.705 2.716 2.651 2.950 2.730 2.701 

95%-CVaR 1.719% 1.681% 1.698% 1.716% 1.719% 1.660% 

Maximum Drawdown -6.593% -6.123% -6.356% -6.504% -6.590% -6.096% 

Sharpe ratio 1.134 1.170 1.141 1.126 1.132 1.171 

CVaR ratio6 0.145 0.151 0.147 0.143 0.140 0.151 

correlation coefficient is forced to be involved in the risk parity 

portfolio.  We compare cases 1 and 5 in Table 1, and examine 

the effect on the mutual dependence. 

 

Table 5: Comparisons for different mutual dependence 

α = 0.80 Case 1 Case 5 

Stock 13.53% 13.53% 

Bond 86.47% 86.47% 

 

Table 5 shows the weights of each portfolio in 0.80 confidence 

level.  We find the mutual dependence is not effective. 

 

                                            

 
6  CVaR ratio = (𝑟𝑃̅ − 𝑟𝑓) 𝐶𝑉𝑎𝑅(𝛼)⁄  , where rP̅  is expected portfolio return and rf  is risk-free rate (1 month Japanese Yen 

LIBOR)  

5. Backtest 
 

It is well-known that the risk and dependence of financial 

assets are time-varying, which means that the optimal tail risk 

parity portfolio also change over time. 

Suppose we invest four assets; Japanese stock and bond, 

U.S. stock and bond. The portfolio is rebalanced each first day 

of the month, and risk contribution of CVaR is estimated in a 

rolling window of sixty months.  We implement the backtest 

in the following setting. 

Data : Japanese Government Bond index – Citi JPGBI 

     Japanese Stock index – Nikkei 225 
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  U.S. Government Bond index – Citi USGBI 

     U.S. Stock index–S&P500 

Period: January 1993 – July 2016, monthly data 

Currency hedging strategy: perfect hedging on a yen basis 

Hedge cost: difference between U.S. and Japanese 

interest rate (one month LIBOR) 

Number of simulation paths: 20,000 paths 

We examine the results of the backtest as well as the basic 

analysis.  We show the results for the confidence level where 

the difference of the portfolio weights between tail risk parity 

portfolio and risk parity portfolio is the largest (Figure 3 shows 

risk parity portfolio’s weight). 

 

5.1 Expected return 
Figure 4 shows the difference of portfolio weights (tail 

risk parity portfolio minus risk parity portfolio) between 

cases 1 and 2 as in the basis analysis. The portfolio weight of 

U.S. bond has increased relatively toward 2002 due to the rise 

in expected return of U.S. bond. 

As shown in Table 7, the tail risk parity portfolio 

outperforms the risk parity portfolio due to the effect of 

expected return. 

 

5.2 Distribution 
Similarly, Figures 5 and 6 show the difference of portfolio 

weights for different distributions, respectively. 

Figure 5 shows the difference calculated using the 

historical simulation method between cases 1 and 3.  The 

weight of Japanese bond has decreased relatively due to the 

decrease in skewness of the return. Figure 6 shows the 

difference calculated using Monte Carlo method under the GH 

distribution between cases 1 and 4.  In contrast, the weight of 

Japanese bond has increased relatively due to the increase in 

kurtosis in 2003.  

Table 7 indicates the absolute return goes down but the 

efficiency index goes up in the historical simulation.  

However, various statistics and efficiency index go down in 

Monte Carlo method under the GH distribution, compared with 

risk parity portfolio. The reason is that overinvesting Japanese 

Government Bonds has greatly influenced the 2003 VaR 

shock7 in Japan.  

 

5.3 Mutual dependence 
The differences in the portfolio weights between cases 1 

and 5 remain within the range of 1% in all period, and then we 

could not find the effect due to the non-linear dependence. 

 
6. Conclusion 
 

We compare the tail risk parity strategy using the 

following three estimation methods of CVaR; Delta-normal 

method, Historical-simulation method and Monte Carlo 

                                            

 
7The 10 year JGB yield triples from 0.5% in June 2003 to 1.6% in September 2003. 

method. We also clarify the difference of risk parity portfolio 

and tail risk parity portfolio due to the following three factors; 

expected return, distribution and mutual dependence. 

In the basic analysis, we find we invest in the assets with 

higher expected return and skewness in the tail risk parity 

portfolio. This result is reasonable to the expected utility theory. 

On the other hand, we tend to invest in the assets with higher 

kurtosis at low confidence level. This result is the opposite to 

the expected utility theory. 

We also implement the backtest using historical data of 

Japanese stock and bond, U.S. stock and bond.  The 

portfolio return of tail risk parity with historical-simulation 

method, has declined, but the efficiency index is rising. On 

the other hand, Monte Carlo method assuming GH 

distribution, various statistics and efficiency index 

deteriorated compared with usual risk parity portfolio. In this 

paper, we could not find the effect of non-linear dependence. 

In the future research, we need to determine how to set 

parameters and how to decide the distribution to use the tail 

risk parity strategy in practice. We also need to compare with 

different risk parity strategies using downside risk measures. 
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