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Abstract. Ross (2015) has showed "Recovery Theorem", which enables us to estimate real world distribution from 

state price. Under the assumption of time-homogeneous Markov economy, we can estimate forward looking return 

distribution from option price by applying the Recovery Theorem. However, it is not easy to obtain accurate 

estimates because it is necessary to solve an ill-posed problem in the estimation process. Kiriu and Hibiki (2016) 

has proposed a method to stabilize the solution by configuring the regularization term considering prior information, 

and showed the effectiveness of the method. Recently, Jensen et al. (2016) propose "Generalized Recovery 

Theorem" by relaxing the assumption of time-homogeneity of state price. By applying this new theorem, we can 

recover real world transition probabilities from a current state to all future states over different time horizons. 

Nevertheless, it is difficult to obtain appropriate estimates because it is necessary to solve an ill-posed problem as 

with the Recovery Theorem. In this research, we propose a new estimation method to stabilize the solution by 

giving prior information about a real world distribution, and a setting method of prior information using observed 

data. Furthermore, we verify the effectiveness of the proposed method through numerical experiments using 

hypothetical data.  

  

Keywords: Generalized Recovery Theorem, probability distribution estimation, regularization method 

 

 

1. INTRODUCTION 
 

Ross (2015) has showed a theorem that enables us to 

drive a representative investor's risk preference and a real 

world distribution from risk neutral distribution under the 

assumption that there is a representative investor with time-

separable utility. This theorem is named Recovery Theorem 

(RT). By applying RT under the assumption that state 

prices follow time-homogeneous Markov chain, we can 

recovery forward looking return distribution from option 

prices. However, it is pointed out that a recovered real 

world distribution is unstable because it is necessary to 

solve an ill-posed problem in the estimation process. Kiriu 

and Hibiki (2016) have extended the estimation method of 

Audrino et al. (2015) which use Tikhonov regularization, 

and proposed a method to stabilize the solution by 

configuring the regularization term considering risk neutral 

distribution as prior information. Furthermore, Kiriu and 

Hibiki (2016) have showed the effectiveness of the method 

through numerical experiments using hypothetical data.  

Recently, Jensen et al. (2016) propose a new theorem, 

Generalized Recovery Theorem (GRT), by relaxing the 

assumption of time-homogeneity of state prices in RT. 

Compared with RT, it is expected that we can eliminate bias 

caused by the assumption of time-homogeneity of state 

prices by estimating real world distribution with GRT. 

Jensen et al. (2016) indicate we can apply GRT when we 

parameterize a representative investor's risk preference, and 
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then verify the predictive power of the expected return 

recovered from S&P500 option data. 

In this research, we discuss the method to estimate a 

real world distribution with GRT. We propose a new 

estimation method to stabilize the solution by giving prior 

information about a real world distribution, because it is 

difficult for conventional method to estimate a real world 

distribution accurately. And then we show a method of 

setting prior information using the information contained in 

observed data. Furthermore, we verify the effectiveness of 

the proposed method through numerical experiments using 

hypothetical data. 

We find the following two points through the 

numerical experiments. (1) We show a possibility that a 

real world distribution recovered with our proposed method 

is more accurate than the distributions both given as priori 

information and recovered with conventional estimation 

method. (2) Proposed method can improve the estimation 

accuracy by configuring prior information in accordance 

with the observed data. 

 

2. GENERALIZED RECOVERY THEOREM 
 

In this section, we summarize GRT, which Jensen et al. 

(2016) have showed. We assume an arbitrage free and 

complete market in a discrete time with a finite state multi-

period model, and then define market state 𝑠(=
1,⋯ , 𝑠0, ⋯ , 𝑆) as 𝑟𝑠, which are underlying stock returns 

from current time and state, thus 𝑟𝑠0 = 0%. 𝜫 ≡ (𝜋𝜏,𝑠) is 

a 𝑇 × 𝑆 spot state price matrix. 𝜋𝜏,𝑠 denotes a state price 

of going from the current state 𝑠0 to state 𝑠 in τ periods. 

Similarly, we define a 𝑇 × 𝑆  risk neutral probability 

matrix 𝑸 ≡ (𝑞𝜏,𝑠), a 𝑇 × 𝑆 real world probability matrix 

𝑷 ≡ (𝑝𝜏,𝑠)  and a 𝑇 × 𝑆  pricing kernel matrix 𝑴 ≡
(𝑚𝜏,𝑠). 

 We suppose a spot state price matrix 𝜫 is known 

because it can be estimated from option price. 𝑞𝜏,𝑠  is 

derived from 𝜋𝜏,𝑠 since 𝑞𝜏,𝑠  and 𝜋𝜏,𝑠  are related in the 

following formula. 

𝑞𝜏,𝑠 =
𝜋𝜏,𝑠

∑ 𝜋𝜏,𝑠
𝑆
𝑠=1

    (𝜏 = 1,⋯ , 𝑇; 𝑠 = 1,⋯ , 𝑆) (1) 

On the other hand, the relationship among 𝜋𝜏,𝑠, 𝑚𝜏,𝑠 and 

𝑝𝜏,𝑠 is expressed as 

𝜋𝜏,𝑠 = 𝑚𝜏,𝑠𝑝𝜏,𝑠    (𝜏 = 1,⋯ , 𝑇; 𝑠 = 1,⋯ , 𝑆) (2) 

Therefore, we need the values of not only state prices but 

also pricing kernel to obtain real world probabilities. 

We can recover pricing kernel and real world 

probabilities from state prices with GRT by assuming that 

there is a representative investor with time-separable utility. 

Under this assumption, pricing kernel is given by 

𝑚𝜏,𝑠 = 𝛿𝜏 (
𝑢𝑠

𝑢0

) = 𝛿𝜏ℎ𝑠    (𝜏 = 1,⋯ , 𝑇; 𝑠

= 1,⋯ , 𝑆) 

(3) 

where δ ∈ (0,1] is a discount factor of the utility, 𝑢𝑠 > 0 

is a marginal utility at state 𝑠, ℎ𝑠 is a normalized marginal 

utility so as to satisfy the condition that the marginal utility 

at state 𝑠0 equals one. The following equation is obtained 

by substituting Equation (3) into Equation (2). 

𝜋𝜏,𝑠 = 𝛿𝜏𝑝𝜏,𝑠ℎ𝑠    (𝜏 = 1,⋯ , 𝑇; 𝑠 = 1,⋯ , 𝑆) (4) 

We define a S-dimensional diagonal matrix of marginal 

utilities 𝑯 = diag(ℎ1, ℎ2, ⋯ , ℎ𝑆)  and T-dimensional 

diagonal matrix of discount factor 𝑫 = diag(δ, 𝛿2, ⋯ , 𝛿𝑇). 

Equation (4) is represented using the following matrices. 

𝜫 = 𝑫𝑷𝑯 (5) 

Since 𝑷 is a probability matrix, we can write 𝑷𝒆 = 𝒆, 

where 𝒆 = (1,⋯ ,1)′ is a vector of ones. The following 

expressions can be calculated, multiplying both sides of 

Equation (5) by 𝑯−𝟏𝒆. 

𝜫𝑯−𝟏𝒆 = 𝑫𝑷𝒆 = 𝑫𝒆 (6) 

[

𝜋1,1 ⋯ 𝜋1,𝑆

⋮ ⋱ ⋮
𝜋𝑇,1 ⋯ 𝜋𝑇,𝑆

]

[
 
 
 
 
 
 
 
ℎ1

−1

⋮
ℎ𝑠0−1

−1

1
ℎ𝑠0+1

−1

⋮
ℎ𝑆

−1 ]
 
 
 
 
 
 
 

= [
𝛿
⋮

𝛿𝑇
] (7) 

We can find a solution of Equation (7) for 𝑆 ≤ 𝑇 because 

we have 𝑇  equations and 𝑆  unknowns, which are 

δ, ℎ1
−1, ⋯ , ℎ𝑠0−1

−1 , ℎ𝑠0+1
−1 , ⋯ , ℎ𝑆

−1 . The solution can be 

obtained by minimizing the differences of both sides in 

Equation (7). This equation is linear except for 𝛿𝜏. To 

make the equation more simple, we linearize 𝛿𝜏 around 

𝛿0. Based on a Taylor expansion, we write 𝛿𝜏 ≈ 𝛿0
𝜏 +

𝜏𝛿0
𝜏−1(𝛿 − 𝛿0) = 𝑎𝜏 + 𝑏𝜏𝛿 where 𝑎𝜏 = −(𝜏 − 1)𝛿0

𝜏, 𝑏𝜏 =
𝜏𝛿0

𝜏−1. Equation (7) becomes in the following: 

[
−𝑏1

⋮
−𝑏𝑇

𝜋1,1 ⋯ 𝜋1,𝑠0−1

⋮ ⋱ ⋮
𝜋𝑇,1 ⋯ 𝜋𝑇,𝑠0−1

𝜋1,𝑠0+1 ⋯ 𝜋1,𝑆

⋮ ⋱ ⋮
𝜋1,𝑠0−1 ⋯ 𝜋𝑇,𝑆

]

[
 
 
 
 
 
 
 

𝛿
ℎ1

−1

⋮
ℎ𝑠0−1

−1

ℎ𝑠0+1
−1

⋮
ℎ𝑆

−1 ]
 
 
 
 
 
 
 

= [

𝑎1−𝜋1,𝑠0

⋮
𝑎𝑇 − 𝜋𝑇,𝑠0

] 

(8) 

Rewriting Equation (8) in matrix form as 

𝑩𝒉𝜹 = 𝒂𝝅. (9) 

A discount factor of the utility and marginal utilities, 



Ito, Kiriu and Hibiki 

 

 

δ, ℎ1
−1, ⋯ , ℎ𝑠0−1

−1 , ℎ𝑠0+1
−1 , ⋯ , ℎ𝑆

−1,  can be estimated by 

minimizing the differences of both sides in Equation (9). 

Specifically, the following optimization problem is solved. 

min
𝒉𝜹

  ∥ 𝑩𝒉𝜹 − 𝒂𝝅 ∥𝟐
𝟐 (10) 

subject to  0 < 𝛿 ≤ 1 (11) 

  ℎ𝑠
−1 > 0  (𝑠 = 1,⋯ , 𝑠0 − 1, 𝑠0

+ 1,⋯ , 𝑆) 
(12) 

Finally, we can calculate a real world probability 𝑝𝜏,𝑠 

as 

𝑝𝜏,𝑠 =
1

𝛿𝜏
ℎ𝑠

−1𝜋𝜏,𝑠    (𝜏 = 1,⋯ , 𝑇; 𝑠 = 1,⋯ , 𝑆) (13) 

 

3. ESTIMATION METHOD 
 

In this section, we show the specific methodology to 

derive a real world probability matrix 𝑷  from option 

prices with GRT. We discuss the estimation method under 

the assumption of 𝑆 ≤ 𝑇 hereafter. 

 

3.1 Estimating State Prices 
A state price matrix 𝜫  can be estimated by the 

method proposed by Breeden and Litzenberger (1978). The 

state price function 𝜋(𝜏, 𝑘) is expressed as 

𝜋(𝜏, 𝑘) =
𝜕2𝑐(𝜏, 𝑘)

𝜕𝑘2
    (𝜏 = 1,⋯ , 𝑇) (14) 

where 𝑘 is a strike price and 𝑐(𝜏, 𝑘) is the function of 

call option price. We can obtain 𝜋𝜏,𝑠  numerically by 

discretizing 𝜋(𝜏, 𝑘). 

 

3.2 Proposed Method 
The condition number of 21 × 21  matrix 𝑩 

estimated using S&P500 option data from 2000 to 2016 is a 

very large value of 2.7 × 1017  in average. Therefore, 

optimization problem (10) - (12) is ill-posed. The ill-posed 

problem has the bad characteristics that the solution is 

highly sensitive to a noise because of low independency of 

equations. It is generally difficult to derive an accurate 

solution from the ill-posed problem.  Consequently, the 

solutions are not stably obtained, and a real world 

distribution estimated by a conventional estimation method 

is inappropriately distorted.  

In this research, we propose a new estimation method 

to stabilize the solution by giving prior information about a 

real world distribution. Specifically, we reformulate the 

object function as 

∥ 𝑩𝒉𝜹 − 𝒂𝝅 ∥2
2+ 𝜁1(𝛿 − 𝛿̅)

2
+ 𝜁2 ∑ (ℎ𝑠

−1 − ℎ̅𝑠
−1)

2
𝑆

𝑠=1,𝑠≠𝑠0

 (15) 

where 𝜁1 and 𝜁2 are regularization parameters, 𝛿̅ is prior 

information of a discount factor of the utility and ℎ̅𝑠
−1 are 

those of marginal utilities. The first term denotes the 

original objective function. The second and third terms are 

regularization terms, which penalize the differences 

between the estimates and prior information. When 𝛿̅, ℎ̅𝑠
−1 

are given, we rewrite Equation (13) into 

�̅�𝜏,𝑠 =
1

𝛿̅𝜏
ℎ̅𝑠

−1𝜋𝜏,𝑠    (𝜏 = 1,⋯ , 𝑇; 𝑠 = 1,⋯ , 𝑆) (16) 

Therefore, the proposed method is regarded as the way of 

solving a problem by giving prior information about a real 

world distribution. 

 

3.3 Priori Information 
We show a method of setting prior information using 

the information contained in observed data though various 

kinds of prior information are examined. 

 

3.3.1 The Discount Factor of the Utility 
We examine the method of using a risk-free discount 

factor implied in state prices as the priori information about 

the discount factor of the utility. Since the sum of state 

prices equals the risk-free discount factor, 𝛿̅ can be set as 

in the following optimization problem. 

min
𝜹

∑(𝛿̅𝜏 − ∑𝜋𝜏,𝑠

𝑆

𝑠=1

)

2𝑇

𝜏=1

 (17) 

The discount factor of the utility equals the risk-free 

discount factor when the representative investor is risk 

neutral. These values do not generally coincide with each 

other, but we suppose the difference is small. We also set  

𝛿̅ as the specified point 𝛿0 in a Taylor expansion. 

 

3.3.2 Marginal Utility 
We suppose a CRRA utility as a representative 

investor’s risk preference. We substitute δ = 𝛿̅, ℎ𝑠
−1 =

(1 + 𝑟𝑠)
𝛾𝑅  into the optimization problem (10) - (12) and 

solve for 𝛾𝑅.  We set the solution as prior information of 

the marginal utility. In this method we attempt to find a 

more accurate solution by setting prior information with 

respect to representative investor’s risk preferences 

estimated under the assumption of parametric utility. We 

can flexibly express the representative investor’s risk 

preferences implied in observed option data since the non-

parametric solution is obtained. 

 

4. NUMERICAL EXPERIMENTS 
 

In this section we examine the estimation accuracy of 

the proposed method by comparing a preset hypothetical 

real world probability matrix 𝑷𝐻  with a real world 

probability matrix 𝑷𝐸 estimated from data with noise. The 
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reason we conduct numerical experiments by using 

hypothetical data is that we do not know a true real world 

probability matrix from real option data and it is difficult to 

verify the accuracy of estimation. 

4.1 Procedure of Analysis 
Figure 1 represents an overview of the analysis. Firstly, 

we give the hypothetical real world probability matrix 𝑷𝐻, 

the discount factor of the utility 𝛿𝐻, marginal utility ℎ𝑠
𝐻  as 

true values. We calculate 𝚷𝐻  in Equation (5). Given 

market data with noise, we generate the state price matrix 

𝚷𝑁, which is expressed as 

𝜋𝜏,𝑠
𝑁 = 𝜋𝜏,𝑠

𝐻 (1 + 𝜎𝑒𝜏,𝑠)    (𝜏 = 1,⋯ , 𝑇; 𝑠 = 1,⋯ , 𝑆) (18) 

where σ is a noise parameter. 𝑒𝜏,𝑠 follows an independent 

and standard normal distribution. We obtain estimated 

values of the discount factor 𝛿𝐸, marginal utilities ℎ𝑠
𝐸  and 

the real world probability matrix 𝑷𝐸  from 𝚷𝑁  with 

proposed or conventional method. Finally, we evaluate the 

estimation accuracy by measuring the differences between 

𝑷𝐻 and 𝑷𝐸. 

 

 

 

 

 

 

 

 

 

Figure 1: Summary of the analysis 

 

4.2 Setting 
4.2.1 State and Period 

Market return is defined by underlying asset returns 

from state 𝑠0 at period 0. We provide 21 returns in total 

placed by 5% symmetrically from the return of 0%.  

Specifically, 𝑟1 = −50%, 𝑟𝑠0 = 𝑟16 = 0%, 𝑟21 = 50%. For 

simplicity, we suppose 𝑇 = 𝑆 = 21. 

 

4.2.2 Evaluation Criteria 
The estimation accuracy is evaluated by the Kullback-

Leibler divergence (KL divergence), which measure the 

difference between two probability distributions. The KL 

divergence of the estimated distribution 𝑷𝐸  from the 

hypothetical distribution 𝑷𝐻 is expressed as 

𝐷𝐾𝐿(𝑷
𝐸 ∥ 𝑷𝐻) = ∑ ∑ 𝑝𝜏,𝑠

𝐸𝑆
𝑠=1 ln (

𝑝𝜏,𝑠
𝐸

𝑝𝜏,𝑠
𝐻 )𝑇

𝜏=1 . (19) 

We evaluate the ratio of KL divergence of the estimated 

distribution 𝐷𝐾𝐿(𝑷
𝐸 ∥ 𝑷𝐻) to KL divergence of the risk 

neutral distribution  𝐷𝐾𝐿(𝑸
𝐸 ∥ 𝑷𝐻) . We develop the 

analysis with 100 sets of random numbers and calculate the 

average of the ratio �̅�𝐾𝐿 . �̅�𝐾𝐿 < 1  shows that the 

estimation accuracy is improved by a risk adjustment with 

GRT. On the other hand, �̅�𝐾𝐿 > 1  shows that the 

estimation accuracy is degraded by the risk adjustment. 

We set 𝜁1 = 10−2 for simplicity because it is little 

sensitive to the estimation accuracy. 

 

4.2.3 Hypothetical Data 
The hypothetical real world probability matrix 𝑷𝐻 is 

generated based on S&P500 historical daily return data 

from January 3, 1950 to December 30, 2016. Firstly, we set 

a reference date and then calculate returns using rolling 

windows with the size of 30, 60,⋯, 630 calendar days. 

Then we generate a matrix based on the number of state 

transitions from the return reference date. A return less than 

or equal to -47.5% (greater than or equal to 47.5%) is 

assigned to state 1 (state 21). The reference date is rolling 

on a daily basis from January 3, 1950. Finally, we sum up 

all the matrices, and adjust each element of the matrix so 

that it can be a stochastic matrix, which sum of row 

elements is equal to one. 

The hypothetical discount factor of the utility 𝛿𝐻 and 

marginal utility ℎ𝑠
𝐻  are generated based on S&P500 

historical return data and option data. We calculate a state 

price matrix 𝜫 from an option data on March 1, 2017 as 

shown in the section 3.1. The solutions of the following 

optimization problem under the constraints (11) and (12) 

are applied to hypothetical data 𝛿𝐻 , ℎ𝑠
𝐻 . 

min
𝜹,𝒉𝒔

∥ 𝚷 − 𝑫𝑷𝑯 ∥𝟐
𝟐
 (20) 

Figure 2 represents the obtained pricing kernel 𝑚𝜏,𝑠
𝐻 . 

Theoretically, pricing kernel decreases monotonically when 

a representative investor is risk averse. However, it is 

pointed out that the pricing kernel estimated from real data 

is not a monotonic function, which partially rises as shown 

in a lot of previous studies (Jackwerth (2000) and 

Rosenberg and Engle (2002), etc.). The form of the 

hypothetical pricing kernel coincides with the form of 

pricing kernel estimated empirically in previous studies. 

 

Figure 2: Hypothetical Pricing Kernel 
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(a) Real world distribution (a month) 

 

(b) Real world distribution (three months) 

 

(c) Real world distribution (six months) 

Figure 3: Estimates of the distribution（σ = 1%, 𝜁1 = 10−2, 𝜁2 = 10−4.4） 

 

4.2.4 Perspective for Evaluation 

We compare KL divergence �̅�𝐾𝐿(𝑷
𝐸 ∥ 𝑷𝐻)  of the 

following five types of distributions, and examine the 

effectiveness of the proposed method. "RND" is a risk 

neutral probability distribution calculated with Equation (1). 

"Basic" is the real world probability distribution estimated 

with the optimization problem shown by Jensen et al. 

(2016). "CRRA" is the real world distribution calculated 

with Equation (16) by using 𝛿̅, ℎ̅𝑠
−1 estimated as shown in 

the section 3.3. "Proposed_CRRA" and "Proposed_RND" 

are the distributions calculated by the proposed method 

with the distribution "CRRA" and a risk neutral probability 

distribution "RND" as prior information, respectively. 

Setting the risk neutral distribution as prior information 

corresponds to ℎ̅𝑠
−1 = 1(𝑠 = 1,⋯ , 𝑆) which is the same as 

the prior information used in Kiriu and Hibiki (2016). 

We attempt to examine the results from the following 

perspective for evaluation in section 4.4. 

(1) When the KL divergence of "Proposed_CRRA" or 

"Proposed_RND" is less than that of "RND", which 

equals one, the result means that the estimation 

accuracy of the distribution is improved by risk 

adjustment with the proposed method. 

(2) When the KL divergence of "Proposed_CRRA" or 

"Proposed_RND" is less than that of "Basic", it 

indicates that the proposed method can estimate a real 

world distribution more accurately than the 

conventional method.  

(3) When the KL divergence of "Proposed_CRRA" is less 

than that of "CRRA" (that of "Proposed_RND" is less 

than that of "RND"), it suggests that the distribution 

calculated by the proposed method is more accurate 

than the distribution given as prior information.  

(4) When the KL divergence of "Proposed_CRRA" is less 

than that of "Proposed_RND", we can estimate the 

distribution more accurately by giving prior 

information using observed data.  

 

4.3 Examples of the Estimates 
The examples of real world distributions are shown in 

Figure 3. Fig 3 (a), (b), and (c) show distributions in a 

month, three months, and six months. The distributions 

estimated by the conventional method are inappropriately 

distorted.  It is because it is necessary to solve the ill-

posed problem in the estimation process, and the estimated 

values are affected heavily by noise. On the other hand, the 

distributions estimated by the proposed method with 

"CRRA" as prior information are close to the hypothetical 

distributions. It is because it is expected that the 

regularization terms diminish the effect of noise. 

 

4.4 Base Case 
Figure 4 shows the KL divergence of five types of 

distributions as shown in section 4.2.4 for different values 

of 𝜁2 where 𝜁2 = 10−10, 10−9.6, ⋯ , 102. The smaller the 

KL divergence is, the higher the estimation accuracy is. The 

KL divergences of "Proposed_CRRA" and 

"Proposed_RND" approach asymptotically that of "Basic" 

as 𝜁2 gets smaller because the solution estimated by the 

proposed method in the case of 𝜁1, 𝜁2 = 0  corresponds 

with the solution estimated by the conventional method. 

The KL divergence of the distribution estimated by the 

proposed method asymptotically approaches that of the 

distribution given as priori information as 𝜁2 gets larger 

since a solution estimated by the proposed method in the 

case of 𝜁1 → ∞ and 𝜁2 → ∞ coincides with 𝛿̅ and ℎ̅𝑠
−1 

given as prior information. Therefore, as 𝜁2 gets smaller, 

the KL divergence of "Proposed_CRRA" asymptotically 

approaches that of "CRRA". The KL divergence of 

"Proposed_RND" becomes close to that of " RND". 

Firstly, we examine the results of the case of σ = 1%. 

The KL divergence of "Basic" is larger than that of "RND", 

which shows that the estimation accuracy gets worse by 
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(a) σ = 1% 

 

(b) σ = 5% 

Figure 4: Relationship between KL divergences and regularization parameters 

 

risk adjustment. It is because the solution is easily affected 

by noise due to the ill-posed problem. On the other hand, 

the KL divergences of "Proposed_CRRA" and 

"Proposed_RND" are less than that of "RND" when 𝜁2 is 

larger than 10−7, which indicates that risk adjustment by 

the proposed method can improve the estimation accuracy. 

The KL divergence of "Proposed_CRRA" is less than that 

of "CRRA".  It suggests the proposed method can estimate 

the distribution more accurately than the distribution given 

as prior information. Furthermore, the KL divergence of 

"Proposed_CRRA" is less than that of "Proposed_RND" at 

any 𝜁2. We show that the proposed method can estimate 

the distribution more accurately by giving prior information 

using observed data. 

In addition, we investigate the results of the case of 

σ = 5%. The KL divergence of "Proposed_RND" is not 

less than that of "RND", which shows that 

"Proposed_RND" cannot estimate an accurate distribution. 

On the other hand, "Proposed_CRRA" can estimate the 

accurate distribution by selecting an appropriate 

regularization parameter as in the case of σ = 1% . 

However, the range of 𝜁2when noise is large becomes 

narrower than when noise is small in which the KL 

divergence of "Proposed_CRRA" is less than that of 

"CRRA". Thus, it is particularly important to select an 

appropriate regularization parameter for a large noise. 

 

5. CONCLUSION 
 

In our paper, we discuss the method to estimate a 

forward looking return distribution from option prices with 

GRT. It is necessary to solve an ill-posed problem in order 

to estimate a real world distribution with GRT. Then we 

propose a new estimation method to stabilize the solution 

under the given prior information with respect to the real 

world distribution, and the method of setting prior 

information using observed data. Furthermore, we verify 

the effectiveness of the proposed method through numerical 

experiments using hypothetical data. 

We find the following two points. (1) There is 

possibility that a real world distribution recovered with our 

proposed method is more accurate than the distribution 

given as priori information and recovered with 

conventional estimation method. (2) Proposed method can 

improve the estimation accuracy by configuring prior 

information in accordance with the observed data. 

Future issues are mainly as follows, (1) developing the 

selection criteria of appropriate parameters, and (2) 

estimating a real world distribution from option data with 

our proposed method and verifying the predictive power. 
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