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Abstract. The payoff of option is determined by the future price of underlying asset and therefore the option
prices contain the forward looking information. Implied distribution is a forward looking distribution of the
underlying asset derived from option prices. There are a lot of studies estimating implied distribution in the
risk neutral probability framework. However, a risk neutral probability generally differs from a real world
probability, which represents actual investors view about asset return. Recently, Ross (2015) has showed
remarkable theorem, named “Recovery Theorem”. It enables us to estimate the real world probability
distribution from option prices under a particular assumption about representative investor's risk preferences.
However, it is not easy to derive the appropriate estimators because it is necessary to solve an ill-posed
problem in estimation process. This paper discusses about the method to estimate a real world distribution
accurately with the Recovery Theorem. The previous studies propose the methods to estimate the real world
distribution, whereas they do not investigate on the estimation accuracy. Hence, we test the effectiveness of
the Tikhonov method used by Audrino et al. (2015) in the numerical analysis with hypothetical data. We
propose a new method to derive the more accurate solution by configuring the regularization term considering
prior information and compare it with the Tikhonov method. Moreover, we discuss regularization parameter
selection to get the accurate real world distribution. We find the following three points through the numerical
analysis.
(1) To stabilize the solution by introducing regularization term is an effective method in terms of
estimating a real world distribution with the Recovery Theorem.
(2) Proposed method can estimate a real world distribution more accurately than the Tikhonov method.
(3) We can offer the appropriate solutions even if the number of maturities is less than that of states.
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1. INTRODUCTION

The payoff of option is determined by the future price
of underlying asset and therefore the option prices contain
the forward looking information. Implied distribution is a
forward looking distribution of the underlying asset derived
from option prices, which is useful for decision making in
financial market such as development of investment
strategy and monetary policy. It is possible to derive a risk
neutral distribution from option prices in a complete market,
and there are a lot of studies on the distribution. However,

the risk neutral probability is generally different from the
real world probability, and the real world distribution
expresses actual investor's view.

Recently, Ross (2015) has showed remarkable theorem,
named "Recovery Theorem". It enables us to estimate a real
world distribution from option prices under a particular
assumption about representative investor's risk preferences.
There are two types of studies related to the Recovery
Theorem. The first is the theoretical extension into the
continuous time case (See Carr and Yu (2012), Dubynskiy
and Goldstein (2013), Walden (2014), Park (2015) and Qin
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and Linetsky (2015) and the fixed income market (Martin
and Ross (2013)). The second is the development of the
practical methodology to estimate real world distribution
from option prices. Spears (2013) indicates that estimators
derived by the simple and instructive method of Ross
(2015) are intuitively inaccurate, and compares the
estimators under various constraints. Audrino et al. (2015)
point out that it is necessary to solve an ill-posed problem
in estimation process, and propose to apply Tikhonov
method, which is a standard regularization method for ill-
posed problems. In addition, they estimate a real world
distribution from 13 years of S&P500 option data and
investigate the effectiveness of simple investment strategy
based on moments of the distribution. To the best of our
knowledge, this is the only research that uses time series
data. Backwell (2015) denotes time-homogeneity of state
prices, which is hypothesized when estimating real world
distribution, cannot be realized in a real market. The
estimation method is also proposed to reduce the bias.

Our paper is included in the second type and discusses
about the method to estimate a real world distribution
accurately with the Recovery Theorem. The previous
studies propose the methods to estimate the real world
distribution, whereas they do not investigate the estimation
accuracy. It is important to examine the problem because it
is ill-posed in estimation process. Hence, we test the
effectiveness of the Tikhonov method, in the numerical
analysis with hypothetical data. We propose a new method
to derive the more accurate solution by configuring the
regularization term reconsidering prior information, and
compare it with the Tikhonov method. Moreover, we
discuss regularization parameter selection to get the
accurate real world distribution.

We find the following three points through the
numerical analysis. (1) To stabilize the solution by
introducing regularization term is an effective method in
terms of estimating a real world distribution with the
Recovery Theorem. (2) Proposed method can estimate a
real world distribution more accurately than Tikhonov
method. (3) We can offer the appropriate solutions even if
the number of maturities is less than that of states.

2. RECOVERY THEOREM

In this section, we summarize the Recovery Theorem.
We assume an arbitrage free and complete market in
discrete time with finite state one period model. Market
states 6; (i =1,..,n) are defined by r,, which are
underlying stock index returns from time 0. P := (p;;) is
a m X n transition state price matrix. p;; is a state price

from 6; to 0]-.1 We similarly define a n x n risk neutral
transition probability matrix Q := (q;;) and a n x n real
world transition probability matrix F := (f;;). We also
describe the notation Q as "risk neutral distribution™ and
F as "real world distribution" depending on the context. P
is assumed to be irreducible?, and therefore Q and F are
also irreducible.

In this section, we suppose that P is known because it
can be estimated from option prices.®> Q is easily derived
from P, since q;; isexpressed as follows,

P G,j=1,..,n). (1)

4ij = §m
k=1 pi,k

On the other hand, it is difficult to derive F because
the state price is simultaneously a function of both a real
world probability and market risk preferences. However,
Ross (2015) showed F can be derived from P under the
assumption that there is a representative investor with Time
Additive Intertemporal Expected Utility Theory preferences
over consumption (TAIEUT investor). A utility function of
the TAIEUT investor is given by

U(e) + 52;13,1-0((:}-) (i=1,..m), @)

where ¢; is the consumption at 8;, U(c) is a utility for
the consumption and & (> 0) is the discount factor of the
utility. We assume that U(c) holds nonsatiation condition
U’(c) > 0 but do not restrict its parametric form. Then the
relationship between f; ; and p;; is expressed as
_1U'(e) Gj=1 ) 3
fi’j_(YU’(cj)pi’j i,j=1,..,n). (3)

The ratio of p;; to f;; is called pricing kernel, and it is
expressed as
U'(c)

_bij
(A RIS
It is dependent on investor's risk preferences.

Since P is non-negative and irreducible, the Perron-
Frobenius Theorem asserts that P has a unique strictly
positive eigenvector v associated with the maximum
eigenvalue A. The Recovery Theorem says that § = A and
U'(c;) =v7t(i=1,..,n) hold, where v; denotes the i~
th element of v.

(,j=1,..,n). 4)

! The state price p;,; shows the price of the security at 6;
which pays one dollar if the next state becomes 6; and
nothing otherwise.

2 Irreducibility is defined as existing k € N which

satisfies (P")i,]- > 0 forall i,j. This assumption is very

likely to be held.

® This is explained in Section 3 in detail.
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We can calculate F from P with the Recovery
Theorem as follows. We solve the eigenvalue problem of P
and derive the maximum eigenvalue A and the
corresponding eigenvector v. Then, we can calculate the
elements of the matrix F as

117]' L.
fij = iv_ipi’j (i,j=1,..,n). (5)

In addition, Ross (2015) also proves that the real
world distribution becomes equal to the risk neutral
distribution, or F = Q, when the sum of the row elements
of P is the same for each row, and it is a special case of
the Recovery Theorem.

3. IMPLEMENTATION

We assume that P is known in Section 2, however it
is necessary to estimate P from market option prices in
practice. We represents the estimation procedure as referred
to Spears (2013) in Figure 1. This section discusses Step 1
and Step 2 because the Recovery Theorem is simply
applied in Step 3. Moreover, we point out the problem
which occurs in Step 2 and propose a new method.

G S . P . F

[ option prices ] current transition real world transition
P p state price matrix state price matrix probability matrix
Step 1 Step 2 Step 3

(Ill-posed problem)  (Recovery Theorem)

Figure 1: Process of recovery
3.1 Step 1: From Option Pricesto S

A nxm current state price matrix is defined as
S:=(s;;), where s;, is a current state price for
7(=1,..,m) periods transition from current state 6; to
6;. For simplicity, we assume the number of states is odd
and 6, is the center state (i, = (n+1)/2).

We estimate S from option prices in Step 1. A
method proposed by Breeden and Litzenberger (1978) is
often used to estimate S and it is used to calculate the state
price more accurately in a lot of literatures. It is not
difficult to estimate S, and therefore we focus on Steps 2
and 3 in the analysis.

3.2Step 2: From Sto P

In Step 2, we estimate the n X n matrix P from the
n X m matrix S assuming that transitions of the states
follow time-homogeneous Markov chain.

We assume it is satisfied that n > m, except the
analysis in Section 4.5. Denote the first column vector of S

by s;, and the iy-th row vector of P by p; . The j-th
element of both vectors are p; ; according to the
definition. Namely,

$1 = Di,- (6)

Because P represents the state transition in one period, we
have the following relationship among s;,s..,; and P.

sl,=slP(r=1,..,m—-1) @)

Denote the (m—1)xn matrix transposed from S

except the last column by A, and the (m — 1) X n matrix

transposed from S except the first column by B.

Equation (7) can be expressed as follows.

AP =B (8)

P should be estimated by minimizing the differences

in both sides of Equation (8) under the no-arbitrage

conditions and Equation (6). The mathematical formulation
is

min [|4P — B} ©)
subjectto s; = p;, (10)
pij =0 (i,j=1,..,n). (11)

Audrino et al. (2015) indicate that the average
condition number of 11 x 11 matrix A estimated from
S&P 500 option data from 2000 to 2012 is a very large
value of 2.17 x 108, and therefore the problem is ill-posed.
The ill-posed problem has a set of candidates of optimal
solutions whose objective function values are almost the
same due to low independency of data. Consequently, it has
the bad characteristics that the solution is highly sensitive
to a small noise. Then, Audrino et al. (2015) propose to use
the Tikhonov method, which is a standard regularization
method, in order to solve the ill-posed problem. The
regularization method is formulated by adding the
regularization term to the objective function to stabilize the
solution against a small change of the input parameter. The
regularization term gives the prior information about the
expected characteristics of solution. Specifically, the
objective function is reformulated as follows,

min  [[AP — BII3 + SIIPII3. (12)

The second term is a regularization term and ||-||,
denotes the Euclidean norm. ¢ is called a regularization
parameter and controls the trade-off between fitting and
stability. Equation (12) can be transformed using a n X n
unit matrix I and a null matrix O.

o e B w

In the Tikhonov method, the problem is solved with
the prior information that the small p;; is preferable.
However, it is inadequate to estimate P using the
information because p; ; should be larger for the higher
transition probability. In addition, the matrix P is not
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irreducible in the special case of ¢ — oo. This means that
the Recovery Theorem cannot be always applied for any ¢.
Therefore, it is difficult to interpret the relationship
between ¢ and the real world distribution F.

We configure the regularization term for the two
preferable prior information to estimate P as follows.

1. s; is equal to p;, (Equation (6)). It is theoretically
derived as above-mentioned.

2. pi; is similar 0 pyygjur (Lj=1,..,;;k€Z 1<
i+k<nl1<j+k<n). This means the state
prices with the equal difference of transition between
states are similar to each other. It is not the
theoretically-derived condition, but it is empirically
expected.

We propose a new method so that we can configure the
regularization term for the prior information mentioned
above. Specifically, we rewrite Equation (9) into

min [|AP = BlI7 + ¢IIP — PII2 (14)
o el e[zl as)
& min - 5
i el ? - Lzl
where,
[ D11 P12 171,1'0 P1in-1 Pin 1
P21 P22 P2i, v P2n-t Pan
P=|Piy1 Dz = DPiyi, = Dign-1  Dign (16)
ﬁn—l,l ﬁn—l,z ﬁn—l,io ﬁn—l,n—l ﬁn—l,n
| ﬁn,l ﬁn,z ﬁn,io ﬁn,n—l ﬁn,n |
[ ?=1Sk,1 Sig+1,1 Sn1 0 0
io—1
;{0:1 Sk,1 Sig1 o Sp-11 Tt 0 0
= S11 S21 tt Sign t Sp-11 Sn,1
0 0 S22t Sipa Zzzi0+lsk,1
0 0 S, Sig-11 Zgzinsk,l ]

Our method stabilizes the elements of the estimated
matrix P by getting closer to P, which expresses the prior
information. However, the values are accumulated in the
first and last columns of the matrix, and we set zero to the
other elements. We have the same sensitivity of P to small
change of input value for the Tikhonov method and our
method because the first term of Equation (13) is the same
matrix as that of Equation (15). Our method can clarify the
effects of the regularization term on the real world
distribution F. The sum of the elements for every row of a
matrix P is identical. In the case of { - oo, we obtain
P = P, and the real world probability coincides with risk
neutral probability. Therefore, as ¢ gets larger, it is
expected that the estimated matrix F gets closer to Q. Our

(17)

method can also derive a risk neutral distribution as
forward looking distribution in the framework of the
Recovery Theorem.

4. NUMERICAL ANALYSIS

We verify the accuracy of estimation and examine the
effectiveness of the proposed method. However, it is
difficult to know a true real world distribution from real
data. Therefore we assume real world distribution using
hypothetical data and verify the accuracy of the estimates.

i H i
" " L____CE ______ _j Hypothetical
S «. P T
. FH
# Step 2 Step3
(lll-posed problem) (Recovery Theorem)
SN = (bN
. e N o |p
SH + Noise P

*Tikhonov method

*Proposed method

Figure 2: Framework of analysis

Figure 2 represents framework of the analysis. Firstly,
we give the two hypothetical matrices; hypothetical real
world transition probability matrix F and pricing kernel
matrix @#. Then, we calculate the transition state price
matrix P™ and current state price matrix S” in backward
order. In reality, it is difficult to obtain S¥ because of the
noise contained option price data and estimation error of
Step 1, so we generate the matrix SN given by adding
noise to S”. We assume the noise e;; follows i.i.d., and
normal distribution with mean 0 and standard deviation o.

sty = sfj(l + ei_]-) GLj=1,..,n) (18)

In this way, we eliminate the impact of estimation
method of Step 1. Then, we estimates PV from sV (Step
2) with proposed or Tikhonov method, and derive F" and
@V applying the Recovery Theorem to P (Step3). If the
estimator F" is close to the original data F¥”, the
estimation method is appropriate because we can restore
the original data. The detail of estimation accuracy criteria
is mentioned in Section 4.1.

4.1 Setting

We explain the definition of states, the way of

generating hypothetical data, and the evaluation criteria of
estimation accuracy.
Market state is defined by return from time 0. We provide
31 returns placed by 2% symmetrically from the return of
0%, which is equally divided from —30% to 30% and
ip=16.
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Figure 3: Base case: KL divergence of fY from f}

We apply the number of maturities of option traded in
the market to the number of period m when estimating S
from real data. However, we can apply any value of m for
the hypothetical data. We analyze the case where the
number of estimated variables is the same as the number of
data, or m = n = 31. The case where m < n is analyzed
in Section 4.5.

We denote the iy-th row vector of the matrix F by
fi,» which is the real world distribution at current state. We
evaluate the estimation accuracy by the KL divergence of

¥ from fH. It is a standard measure of the difference
between the two distributions and defined as

N | £H "N flgl
D (FRIFE) = Z fig,jIn (f” ) (19)

Jj=1 io,J
When the two distributions are exactly equal, KL
divergence is equal to zero. We also have the same
conclusion in the cases of evaluating entire matrix and
using a different criteria such as Euclidean distance. Hence,

we show only the result using Dy, (fI|f#) hereafter.

4.2 Hypothetical Data

We give the hypothetical matrix &% and F¥ as
plausible as possible used in the analysis.

The matrix @ is generated by assuming TAIEUT
investor who has a CRRA utility function U(c) =
c™YR/(1 —yg). yg is relative risk aversion. Assuming
TAIEUT investor, ¢ can be decomposed into U and §
shown in Equation (4). So, we can denote the (i,j))
element of &% by

1+
1+T'l'

—YR
o = 5( ) @i,j=1,..,n). (20)
yr =3 and & = 0.999 are used in the base case.
The matrix F is generated from the S&P 500
historical data. We set a reference date, and calculate
returns from the reference date to the twelve dates which

are set as every 30 calendar days. If it is a holiday, the day
before a holiday is used. A matrix is generated by counting
the number of state transitions in one period from the return
sequence. Denote the return of state 6; by 7; in the matrix,
which is discretely described by every 2%. When a real
historical return is between 7, — 1% and 7; + 1%, it is
assigned to state 6;. A return more than or equal to 29%
(less than or equal to —29%) are assigned to 30%
(—30%). This is repeated daily by changing the reference
date from Jan 3, 1950 to Jan 3, 2014. Then, all the matrices
are summed up. Finally, each element of summed matrix is
divided by each sum of the row elements to make it
probability matrix.

The optimization problem in Step 2 is still ill-posed
because the condition number of A# calculated backward
using ®# and FH is very large, and 3.3 x 10%®. The
numerical results are calculated using random noises for the
specific random seed, but we derive the similar conclusions
for the different seeds.

4.3 Base Case

Figure 3 displays the KL divergence with the
proposed method and Tikhonov method for different values
of ¢ where { =1071,107136,.,,10%6,102. The KL
divergence of q¥ from fi' Dy, (qf|fF), is shown as
"RND" (Risk Neutral Distribution). q%f) is the most
accurate distribution when we estimate the forward looking
distribution in risk neutral probability framework. Getting a
smaller KL divergence than RND is one of the important
points to judge that a real world distribution estimator is
good.

Firstly, we discuss about the results of the case of
o=0% where SV is observed without noise.
Theoretically, the KL divergence where ¢ =0 becomes
zero because the distribution estimated without using
regularization methods equals the original distribution.
However, the estimated KL divergence is 0.273 due to the



Kiriu and Hibiki

s

Kullback-Leibler divergence
ok N WAL O N ®©®

-10 -8 K3 - 2 o 2
Regularization Parameter 7 (log10)

[a] § = 0.995

s

E - -4 2
Regularization Parameter Z (log10)

[b] ygr =10

0

-10 K 3 -4 2 0 2 -10 E B3 -4 2 0
Regularization Parameter Z (log10) Regularization Parameter Z (log10)

c] U: CARA utilit d] FTre. Nikkei225
[c] y

Figure 4: Robustness check: KL divergence of f from f[!

0.6

e
n

o
>

°
)

Kullback-Leibler divergence
=)
w

e
e

-10 -8 6 4 2 0

Regu;larization P;rameter 4 (ioglo)
[a] o = 0%

0.6

e
«n

e
'S

e
N

Kullback-Leibler divergence
o
w

e
-

-6 -4 -2 0 2
Regularization Parameter { (log10)

[b] o = 1%

Figure 5: The case where m < n: KL divergence of f) from fI!

calculation error. This shows that how it is difficult to get
an accurate estimator of ill-posed problem. Using the
proposed method, the minimum KL divergence is
2.65x 1073 where ¢ =10"%2 and the estimation
accuracy is improved drastically. In addition, the proposed
method stabilize the estimators by achieving them closer to
RND as ¢ gets larger. Using the Tikhonov method, the KL
divergence is also improved to 0.134 where { = 1072*
However, the KL divergence with proposed method is
always lower than that with the Tikhonov method in any ¢.

We check the cases with noise (o = 1%, 2%, 5%).
For small ¢, the estimation accuracy significantly
deteriorate, compared with no noise case (o =0%),
because the problem is still ill-posed. The KL divergences
decrease in both regularization methods, as ¢ is greater to
some extent. The result indicates that it is effective to
introduce the regularization term in order to stabilize the
solution, and the estimation accuracy in proposed method is
better than Tikhonov method for any ¢. We find the low
bias estimator is derived by the proposed method because
the regularization term is configured more appropriately
using the prior information.

4.4 Robustness Check

We check the robustness of the result in the base case
by using the different hypothetical data from the base case.
Figure 4a indicates the relationship between the
regularization parameter ¢ and KL divergence where we
use § = 0.995. Figure 4b shows the result of y, = 10.
Figure 4c displays the case of the CARA utility function
with y, =3 and Figure 4d shows the result of F”
estimated from Nikkei225 historical data of the same
period in place of S&P500. These results show that the &
and utility function type are not sensitive to the KL
divergence, but y, and F are sensitive to the shapes of
graph. The following two features observed in the base case
are preserved in any case. Firstly, the estimators using the
proposed method or the Tikhonov method are more
accurate than the estimators without regularization.
Secondly, the estimation accuracy of proposed method is
better than the Tikhonov method. The impact of
hypothetical data change is not so big, and it is expected to
get the similar results in most cases, as long as we use the
plausible hypothetical data. However, the further analysis is
required to demonstrate the robustness.

2



Kiriu and Hibiki

0.2 3
0.18 ——fit:1% e
. fit:2% #
0.16 y 25
’ ——fit:5% j,;,(;
014 —=—reg:1% ﬁ 2
0-12 reg:2%
S o ——reg:5% /] 15
0.08
0.06 1
0.04 s
0‘02 0-6-0-6-0-0-0-0-0-0-00006000600F

-10 -8 -6 -4 -2 0 2
Regularization Parameter { (log10)

Figure 6: Decomposition of the objective function value

45 The Case where m<n

The analysis is done with m = 31 so far. However,
the number of option maturities traded typically in the
market is less than 31. For instance, the number of S&P500
option maturities traded every month regularly in Chicago
Board Options Exchanges is 12, and the number of Nikkei
225 option in Osaka Exchange is 9. In addition, m of
S estimated from market data will be smaller because long-
term options are likely to have low liquidity. We conduct
the analysis for the case where the number of maturities
(data) m is less than the number of states (estimated
variables) n.* More specifically, we estimate the real world
distribution under the 31 states and three kinds of the
numbers of column of S (m = 6,12,31) by the proposed
method, and calculate their KL divergences.

Figure 5a shows the result of o = 0%. Even in the
cases of m = 6 and 12, the variables can be estimated as
accurately as the case of m = 31. The similar result is
obtained in the case of ¢ = 1% in Figure 5b as well. It
might be considered that it is impossible to get the accurate
estimators since the number of data is less than the number
of estimated variables. However, we can estimate the
accurate estimators using the proposed method. This is
because the prior information included in the regularization
term offsets the insufficient information. In other words, all
necessary information concerning investor's  risk
preferences is almost included in the matrix of six columns
to estimate the real world distribution from the state price
matrix.

4 Usually, n should be less than m to estimate variables
under the sufficient data. Therefore, the case in this section
is analyzed under the insufficient uncertainty.
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Figure 7: Function value of h(¢) and KL divergence

4.6 Selecting Regularization Parameter

We evaluate the estimation accuracy for various
regularization parameters ¢, using the KL divergence.
However, it is difficult to choose an appropriate value of ¢
as a practical matter. Then, we propose a method of how
to select ¢ to get the accurate estimates of the real world
distribution.

The objective function of optimization problem in
Step 2 is Equation (14), and it consists of two parts. The
first term shows the fitting error, and denote it by yy;,
whereas the second term except ¢ shows the deviation
between PV and PN, and denote it by Yreg -WWE show
them for the various ¢ in Figure 6. As ¢ increases, yy;
decreases and y,., increases monotonically. Both yy;
and y,., have the domain where the values greatly change.
For example, in the case of o = 1%, the value of yy;
greatly changes around ¢ = 107° and y,,, around ¢ = 1.
This is one of the characteristics of the ill-posed problem.
The purpose of using regularization term in the ill-posed
problem is to find the optimal solution stably among the
degenerated solutions which have almost the same fitting
error, based on the prior information. Therefore, the sound
strategy is to select ¢ in the ranges where both yg;, and
Yreg are relatively small. In the case of Figure 6, the
appropriate value of ¢ is between about 10™* and 1072
In consideration of the fact that the range of yy; is
different from the range of y,.,, we propose the method of
selecting ¢ by minimizing the function h({) defined as,

yfit(() - Yfit(o) Yreg(Z) - Yreg(oo)
yfit(oo) - Yfit(o) Yreg(o) - Yreg(oo)
Yrie(§) and y,.4({) are functions of { as shown in
Figure 6. h({) is the sum of the normalized values. y(0)
is the value without the regularization term and y() is
the value derived under the condition that PN = PN, So,
Yreg(®@) =0 must hold. Moreover, h(0) =1 and

h({):= (21)
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h(e) =1 must hold because both v ({) and y,..q(J)
are monotonic functions. We obtain the different values of
h(¢{) by solving the optimization problems for the different
values of ¢, and then we can adopt the ¢ that minimizes
h(9) -
We show the function values of h(¢) and the KL
divergences for various values of ¢ in the base case in
Figure 7. In the range of small h({), the KL divergence is
also small in each case where o =1%,2%,5% . It
indicates that ¢ can be selected well by using h({). Our
selection method could select appropriate values of ¢ in
most cases even for different hypothetical data, and we can
find it effectively.®

5. CONCLUSION

The Recovery Theorem makes it possible to estimate
the real world distribution implied in option prices.
However, it is not easy to find accurate estimators because
it is necessary to solve the ill-posed problem in the
estimation process. This paper proposes the method to
estimate the real world distribution accurately, and then
analyzes how accurate the estimation is by numerical
analysis using hypothetical data.

We clarify the following three points through the
analysis. First, the regularization method like Tikhonov or
our method used in Step 2 improves the estimation
accuracy. This is because the regularization term enables us
to suppress the effect of perturbation such as numerical
error and data noise. Second, our method can estimate the
real world distribution more accurately than the Tikhonov
method, because our method could introduce more
adequate regularization term, based on the prior
information. Last, we find the fact that we derive the
estimators accurately by our method to some extent even if
the number of maturities of option is less than the number
of states. It is sufficient to provide the six maturities of
options in order to solve the problem with 31 states
appropriately. This is likely to be less than the number of
maturities of option traded in the market. The result
suggests the possibility of obtaining the good estimator of
the real world distribution from option prices traded in the
market.

Future works are as follows, (1) checking the

° We may need to compare it with alternative methods.
For instance, the following function is considered,
yfit(() - yfit(o) yreg(Z) - YTeg(oo)

h = ,
(€)= max (yﬁt(oo) EEN() LI () S

) @

However, we could select better ¢ slightly using Equation
(21), rather than Equation (22). Comparing with other
alternatives is our future research.

robustness of the result under more various conditions and
hypothetical data, and (2) estimating a forward looking real
world distribution from time-series option data with our
proposed method and testing the predictability.
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