
Proceedings of the Asia Pacific Industrial Engineering & Management Systems Conference 2015 

 

 

Estimating Forward Looking Distribution              

with the Ross Recovery Theorem 

 
Takuya Kiriu† 

Graduate School of Science and Technology 
Keio University, Yokohama, Japan 

Tel: (+81) 45-566-1454, Email:kiriutakuya@gmail.com 
 

Norio Hibiki 
Faculty of Science and Technology 
Keio University, Yokohama, Japan 

Tel: (+81) 45-566-1635, Email: hibiki@ae.keio.ac.jp 
 
 

Abstract. The payoff of option is determined by the future price of underlying asset and therefore the option 
prices contain the forward looking information. Implied distribution is a forward looking distribution of the 
underlying asset derived from option prices. There are a lot of studies estimating implied distribution in the 
risk neutral probability framework. However, a risk neutral probability generally differs from a real world 
probability, which represents actual investors view about asset return. Recently, Ross (2015) has showed 
remarkable theorem, named “Recovery Theorem”. It enables us to estimate the real world probability 
distribution from option prices under a particular assumption about representative investor's risk preferences. 
However, it is not easy to derive the appropriate estimators because it is necessary to solve an ill-posed 
problem in estimation process. This paper discusses about the method to estimate a real world distribution 
accurately with the Recovery Theorem. The previous studies propose the methods to estimate the real world 
distribution, whereas they do not investigate on the estimation accuracy. Hence, we test the effectiveness of 
the Tikhonov method used by Audrino et al. (2015) in the numerical analysis with hypothetical data. We 
propose a new method to derive the more accurate solution by configuring the regularization term considering 
prior information and compare it with the Tikhonov method. Moreover, we discuss regularization parameter 
selection to get the accurate real world distribution. We find the following three points through the numerical 
analysis. 
(1) To stabilize the solution by introducing regularization term is an effective method in terms of 

estimating a real world distribution with the Recovery Theorem. 
(2) Proposed method can estimate a real world distribution more accurately than the Tikhonov method. 
(3) We can offer the appropriate solutions even if the number of maturities is less than that of states. 
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1. INTRODUCTION 
 

The payoff of option is determined by the future price 
of underlying asset and therefore the option prices contain 
the forward looking information. Implied distribution is a 
forward looking distribution of the underlying asset derived 
from option prices, which is useful for decision making in 
financial market such as development of investment 
strategy and monetary policy. It is possible to derive a risk 
neutral distribution from option prices in a complete market, 
and there are a lot of studies on the distribution. However, 

the risk neutral probability is generally different from the 
real world probability, and the real world distribution 
expresses actual investor's view. 

Recently, Ross (2015) has showed remarkable theorem, 
named "Recovery Theorem". It enables us to estimate a real 
world distribution from option prices under a particular 
assumption about representative investor's risk preferences. 
There are two types of studies related to the Recovery 
Theorem. The first is the theoretical extension into the 
continuous time case (See Carr and Yu (2012), Dubynskiy 
and Goldstein (2013), Walden (2014), Park (2015) and Qin 
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and Linetsky (2015) and the fixed income market (Martin 
and Ross (2013)). The second is the development of the 
practical methodology to estimate real world distribution 
from option prices. Spears (2013) indicates that estimators 
derived by the simple and instructive method of Ross 
(2015) are intuitively inaccurate, and compares the 
estimators under various constraints. Audrino et al. (2015) 
point out that it is necessary to solve an ill-posed problem 
in estimation process, and propose to apply Tikhonov 
method, which is a standard regularization method for ill-
posed problems. In addition, they estimate a real world 
distribution from 13 years of S&P500 option data and 
investigate the effectiveness of simple investment strategy 
based on moments of the distribution. To the best of our 
knowledge, this is the only research that uses time series 
data. Backwell (2015) denotes time-homogeneity of state 
prices, which is hypothesized when estimating real world 
distribution, cannot be realized in a real market. The 
estimation method is also proposed to reduce the bias. 

Our paper is included in the second type and discusses 
about the method to estimate a real world distribution 
accurately with the Recovery Theorem. The previous 
studies propose the methods to estimate the real world 
distribution, whereas they do not investigate the estimation 
accuracy. It is important to examine the problem because it 
is ill-posed in estimation process. Hence, we test the 
effectiveness of the Tikhonov method, in the numerical 
analysis with hypothetical data. We propose a new method 
to derive the more accurate solution by configuring the 
regularization term reconsidering prior information, and 
compare it with the Tikhonov method. Moreover, we 
discuss regularization parameter selection to get the 
accurate real world distribution.  

We find the following three points through the 
numerical analysis. (1) To stabilize the solution by 
introducing regularization term is an effective method in 
terms of estimating a real world distribution with the 
Recovery Theorem. (2) Proposed method can estimate a 
real world distribution more accurately than Tikhonov 
method. (3) We can offer the appropriate solutions even if 
the number of maturities is less than that of states. 
 

2. RECOVERY THEOREM 
 
In this section, we summarize the Recovery Theorem. 

We assume an arbitrage free and complete market in 
discrete time with finite state one period model. Market 
states 𝜃𝑖  (𝑖 = 1, … ,𝑛)  are defined by 𝑟𝑖 ,  which are 
underlying stock index returns from time 0. 𝑃 ≔ �𝑝𝑖,𝑗� is 
a 𝑛 × 𝑛 transition state price matrix. 𝑝𝑖,𝑗 is a state price 

from 𝜃𝑖 to 𝜃𝑗.1 We similarly define a 𝑛 × 𝑛 risk neutral 
transition probability matrix 𝑄 ≔ �𝑞𝑖,𝑗� and a 𝑛 × 𝑛 real 
world transition probability matrix 𝐹 ≔ �𝑓𝑖,𝑗� . We also 
describe the notation 𝑄 as "risk neutral distribution" and 
𝐹 as "real world distribution" depending on the context. 𝑃 
is assumed to be irreducible2, and therefore 𝑄 and 𝐹 are 
also irreducible. 

In this section, we suppose that 𝑃 is known because it 
can be estimated from option prices.3 𝑄 is easily derived 
from 𝑃, since 𝑞𝑖,𝑗 is expressed as follows, 

𝑞𝑖,𝑗 =
𝑝𝑖,𝑗

∑ 𝑝𝑖,𝑘𝑛
𝑘=1

   (𝑖, 𝑗 = 1, … ,𝑛). (1) 

On the other hand, it is difficult to derive 𝐹 because 
the state price is simultaneously a function of both a real 
world probability and market risk preferences. However, 
Ross (2015) showed 𝐹 can be derived from 𝑃 under the 
assumption that there is a representative investor with Time 
Additive Intertemporal Expected Utility Theory preferences 
over consumption (TAIEUT investor). A utility function of 
the TAIEUT investor is given by 

𝑈(𝑐𝑖) + 𝛿� 𝑓𝑖,𝑗𝑈�𝑐𝑗�   (𝑖 = 1, … ,𝑛)
𝑛

𝑗=1
, (2) 

where 𝑐𝑖 is the consumption at 𝜃𝑖, 𝑈(𝑐) is a utility for 
the consumption and 𝛿 (> 0) is the discount factor of the 
utility. We assume that 𝑈(𝑐) holds nonsatiation condition 
𝑈′(𝑐) > 0 but do not restrict its parametric form. Then the 
relationship between 𝑓𝑖,𝑗 and 𝑝𝑖 ,𝑗 is expressed as 

𝑓𝑖,𝑗 =
1
𝛿
𝑈′(𝑐𝑖)
𝑈′�𝑐𝑗�

𝑝𝑖,𝑗    (𝑖, 𝑗 = 1, … ,𝑛). (3) 

The ratio of 𝑝𝑖,𝑗 to 𝑓𝑖,𝑗 is called pricing kernel, and it is 
expressed as 

𝜙𝑖,𝑗 ≔
𝑝𝑖,𝑗
𝑓𝑖,𝑗

= 𝛿
𝑈′�𝑐𝑗�
𝑈′(𝑐𝑖)

   (𝑖, 𝑗 = 1, … ,𝑛). (4) 

It is dependent on investor's risk preferences.  
Since 𝑃 is non-negative and irreducible, the Perron-

Frobenius Theorem asserts that 𝑃 has a unique strictly 
positive eigenvector 𝒗  associated with the maximum 
eigenvalue 𝜆. The Recovery Theorem says that 𝛿 = 𝜆 and 
𝑈′(𝑐𝑖) = 𝑣𝑖−1 (𝑖 = 1, … ,𝑛) hold, where 𝑣𝑖 denotes the 𝑖-
th element of 𝒗. 

 

                                            
1 The state price 𝑝𝑖,𝑗 shows the price of the security at 𝜃𝑖
 which pays one dollar if the next state becomes 𝜃𝑗 and   
 nothing otherwise. 
2 Irreducibility is defined as existing 𝑘 ∈ ℕ which 
satisfies (𝑃𝑘)𝑖,𝑗 > 0 for all 𝑖, 𝑗. This assumption is very 
likely to be held. 
3 This is explained in Section 3 in detail. 
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We can calculate 𝐹  from 𝑃  with the Recovery 
Theorem as follows. We solve the eigenvalue problem of 𝑃 
and derive the maximum eigenvalue 𝜆  and the 
corresponding eigenvector 𝒗. Then, we can calculate the 
elements of the matrix 𝐹 as 

𝑓𝑖,𝑗 =
1
𝜆
𝑣𝑗
𝑣𝑖
𝑝𝑖 ,𝑗    (𝑖, 𝑗 = 1, … ,𝑛). (5) 

In addition, Ross (2015) also proves that the real 
world distribution becomes equal to the risk neutral 
distribution, or 𝐹 = 𝑄, when the sum of the row elements 
of 𝑃 is the same for each row, and it is a special case of 
the Recovery Theorem. 

 
3. IMPLEMENTATION 

 
We assume that 𝑃 is known in Section 2, however it 

is necessary to estimate 𝑃 from market option prices in 
practice. We represents the estimation procedure as referred 
to Spears (2013) in Figure 1. This section discusses Step 1 
and Step 2 because the Recovery Theorem is simply 
applied in Step 3. Moreover, we point out the problem 
which occurs in Step 2 and propose a new method. 

 

Figure 1: Process of recovery 
 

3.1 Step 1: From Option Prices to 𝑺 
 
A 𝑛 × 𝑚  current state price matrix is defined as 

𝑆 ≔ �𝑠𝑗,𝜏� , where 𝑠𝑗,𝜏  is a current state price for 
𝜏 (= 1, … ,𝑚) periods transition from current state 𝜃𝑖0  to 
𝜃𝑗. For simplicity, we assume the number of states is odd 
and 𝜃𝑖0  is the center state (𝑖0 = (𝑛 + 1)/2). 

 We estimate 𝑆  from option prices in Step 1. A 
method proposed by Breeden and Litzenberger (1978) is 
often used to estimate 𝑆 and it is used to calculate the state 
price more accurately in a lot of literatures. It is not 
difficult to estimate 𝑆, and therefore we focus on Steps 2 
and 3 in the analysis. 

 
3.2 Step 2: From S to P 

 
In Step 2, we estimate the 𝑛 × 𝑛 matrix 𝑃 from the 

𝑛 × 𝑚  matrix 𝑆  assuming that transitions of the states 
follow time-homogeneous Markov chain.   

We assume it is satisfied that 𝑛 ≥ 𝑚 , except the 
analysis in Section 4.5. Denote the first column vector of 𝑆 

by 𝒔1, and the 𝑖0-th row vector of 𝑃 by 𝒑𝑖0 . The 𝑗-th 
element of both vectors are 𝑝𝑖0,𝑗  according to the 
definition. Namely, 

 𝒔1 = 𝒑𝑖0 . (6) 
Because 𝑃 represents the state transition in one period, we 
have the following relationship among 𝒔𝜏 , 𝒔𝜏+1 and 𝑃. 

𝒔𝜏+1⊺ = 𝒔𝜏⊺𝑃 (𝜏 = 1, … ,𝑚 − 1) (7) 
Denote the (𝑚− 1) × 𝑛  matrix transposed from 𝑆 
except the last column by 𝐴, and the (𝑚 − 1) × 𝑛 matrix 
transposed from 𝑆  except the first column by 𝐵 .  
Equation (7) can be expressed as follows. 

𝐴𝑃 = 𝐵 (8) 
𝑃 should be estimated by minimizing the differences 

in both sides of Equation (8) under the no-arbitrage 
conditions and Equation (6). The mathematical formulation 
is 

   min 
𝑃

  ‖𝐴𝑃 − 𝐵‖22  (9) 

   subject to 𝒔1 = 𝒑𝑖0            (10) 

            𝑝𝑖,𝑗 ≥ 0  (𝑖, 𝑗 = 1, … ,𝑛). (11) 
Audrino et al. (2015) indicate that the average 

condition number of 11 × 11 matrix 𝐴  estimated from 
S&P 500 option data from 2000 to 2012 is a very large 
value of 2.17 × 108, and therefore the problem is ill-posed.  
The ill-posed problem has a set of candidates of optimal 
solutions whose objective function values are almost the 
same due to low independency of data. Consequently, it has 
the bad characteristics that the solution is highly sensitive 
to a small noise. Then, Audrino et al. (2015) propose to use 
the Tikhonov method, which is a standard regularization 
method, in order to solve the ill-posed problem. The 
regularization method is formulated by adding the 
regularization term to the objective function to stabilize the 
solution against a small change of the input parameter. The 
regularization term gives the prior information about the 
expected characteristics of solution. Specifically, the 
objective function is reformulated as follows, 

min 
𝑃

   ‖𝐴𝑃 − 𝐵‖22 + 𝜁‖𝑃‖22. (12) 
The second term is a regularization term and ‖∙‖2 

denotes the Euclidean norm. 𝜁 is called a regularization 
parameter and controls the trade-off between fitting and 
stability. Equation (12) can be transformed using a 𝑛 × 𝑛 
unit matrix 𝐼 and a null matrix O. 

min
𝑃

   ��
𝐴
�𝜁𝐼� 𝑃 − �𝐵𝑂��2

2

 (13) 

In the Tikhonov method, the problem is solved with 
the prior information that the small 𝑝𝑖 ,𝑗  is preferable. 
However, it is inadequate to estimate 𝑃  using the 
information because 𝑝𝑖,𝑗  should be larger for the higher 
transition probability. In addition, the matrix 𝑃  is not 

Market
Data 𝑆

current
state price matrix option prices

𝑃
transition

state price matrix

𝐹
real world transition 

probability matrix

Step 3
(Recovery Theorem)

Step 2
(Ill-posed problem)

Step 1
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irreducible in the special case of 𝜁 → ∞. This means that 
the Recovery Theorem cannot be always applied for any 𝜁. 
Therefore,  it is difficult to interpret the relationship 
between 𝜁 and the real world distribution 𝐹.  

We configure the regularization term for the two 
preferable prior information to estimate 𝑃 as follows. 

1. 𝒔1 is equal to 𝒑𝑖0  (Equation (6)). It is theoretically 
derived as above-mentioned. 

2. 𝑝𝑖,𝑗  is similar to 𝑝𝑖+𝑘,𝑗+𝑘 (𝑖, 𝑗 = 1, … ,𝑛; 𝑘 ∈ ℤ, 1 ≤
𝑖 + 𝑘 ≤ 𝑛, 1 ≤ 𝑗 + 𝑘 ≤ 𝑛) . This means the state 
prices with the equal difference of transition between 
states are similar to each other. It is not the 
theoretically-derived condition, but it is empirically 
expected. 

We propose a new method so that we can configure the 
regularization term for the prior information mentioned 
above. Specifically, we rewrite Equation (9) into 

       min 
𝑃

   ‖𝐴𝑃 − 𝐵‖22 + 𝜁‖𝑃 − 𝑃�‖22 (14) 

⇔ min
𝑃

   ��
𝐴
�𝜁𝐼� 𝑃 − �

𝐵
�𝜁𝑃���2

2

        (15) 

where, 

𝑃� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
�̅�1,1 �̅�1,2 ⋯ �̅�1,𝑖0 ⋯ �̅�1,𝑛−1 �̅�1,𝑛
�̅�2,1 �̅�2,2 ⋯ �̅�2,𝑖0 ⋯ �̅�2,𝑛−1 �̅�2,𝑛
⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮

�̅�𝑖0,1 �̅�𝑖0,2 ⋯ �̅�𝑖0,𝑖0 ⋯ �̅�𝑖0,𝑛−1 �̅�𝑖0,𝑛
⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮

�̅�𝑛−1,1 �̅�𝑛−1,2 ⋯ �̅�𝑛−1,𝑖0 ⋯ �̅�𝑛−1,𝑛−1 �̅�𝑛−1,𝑛
�̅�𝑛,1 �̅�𝑛,2 ⋯ �̅�𝑛,𝑖0 ⋯ �̅�𝑛,𝑛−1 �̅�𝑛,𝑛 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡∑𝑘=1

𝑖0 𝑠𝑘,1 𝑠𝑖0+1,1 ⋯ 𝑠𝑛,1 ⋯ 0 0

∑𝑘=1
𝑖0−1𝑠𝑘,1 𝑠𝑖0,1 ⋯ 𝑠𝑛−1,1 ⋯ 0 0
⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮
𝑠1,1 𝑠2,1 ⋯ 𝑠𝑖0,1 ⋯ 𝑠𝑛−1,1 𝑠𝑛,1
⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮
0 0 ⋯ 𝑠2,1 ⋯ 𝑠𝑖0,1 ∑𝑘=𝑖0+1

𝑛 𝑠𝑘,1

0 0 ⋯ 𝑠1,1 ⋯ 𝑠𝑖0−1,1 ∑𝑘=𝑖0
𝑛 𝑠𝑘,1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

 
Our method stabilizes the elements of the estimated 

matrix P by getting closer to 𝑃�, which expresses the prior 
information. However, the values are accumulated in the 
first and last columns of the matrix, and we set zero to the 
other elements. We have the same sensitivity of P to small 
change of input value for the Tikhonov method and our 
method because the first term of Equation (13) is the same 
matrix as that of Equation (15). Our method can clarify the 
effects of the regularization term on the real world 
distribution 𝐹. The sum of the elements for every row of a 
matrix 𝑃� is identical. In the case of 𝜁 → ∞, we obtain 
𝑃 = 𝑃�, and the real world probability coincides with risk 
neutral probability. Therefore, as 𝜁  gets larger, it is 
expected that the estimated matrix 𝐹 gets closer to 𝑄. Our 

method can also derive a risk neutral distribution as 
forward looking distribution in the framework of the 
Recovery Theorem. 
 
4. NUMERICAL ANALYSIS 

 
We verify the accuracy of estimation and examine the 

effectiveness of the proposed method. However, it is 
difficult to know a true real world distribution from real 
data. Therefore we assume real world distribution using 
hypothetical data and verify the accuracy of the estimates. 

 

Figure 2: Framework of analysis 
 

Figure 2 represents framework of the analysis. Firstly, 
we give the two hypothetical matrices; hypothetical real 
world transition probability matrix 𝐹𝐻 and pricing kernel 
matrix 𝛷𝐻 . Then, we calculate the transition state price 
matrix 𝑃𝐻 and current state price matrix 𝑆𝐻 in backward 
order. In reality, it is difficult to obtain 𝑆𝐻 because of the 
noise contained option price data and estimation error of 
Step 1, so we generate the matrix 𝑆𝑁 given by adding 
noise to 𝑆𝐻. We assume the noise 𝑒𝑖,𝑗 follows i.i.d., and 
normal distribution with mean 0 and standard deviation 𝜎. 

𝑠𝑖,𝑗𝑁 = 𝑠𝑖,𝑗𝐻 �1 + 𝑒𝑖,𝑗�   (𝑖, 𝑗 = 1, … ,𝑛) (18) 
In this way, we eliminate the impact of estimation 

method of Step 1. Then, we estimates 𝑃𝑁 from 𝑆𝑁 (Step 
2) with proposed or Tikhonov method, and derive 𝐹𝑁 and 
𝛷𝑁 applying the Recovery Theorem to 𝑃𝑁 (Step3). If the 
estimator 𝐹𝑁 is close to the original data 𝐹𝐻 , the 
estimation method is appropriate because we can restore 
the original data. The detail of estimation accuracy criteria 
is mentioned in Section 4.1. 

 
4.1 Setting 

 
We explain the definition of states, the way of 

generating hypothetical data, and the evaluation criteria of 
estimation accuracy. 
Market state is defined by return from time 0. We provide 
31 returns placed by 2% symmetrically from the return of 
0%, which is equally divided from −30% to 30% and 
𝑖0=16. 

(16) 

(17) 
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We apply the number of maturities of option traded in 
the market to the number of period 𝑚 when estimating 𝑆 
from real data. However, we can apply any value of 𝑚 for 
the hypothetical data. We analyze the case where the 
number of estimated variables is the same as the number of 
data, or 𝑚 = 𝑛 = 31. The case where 𝑚 < 𝑛 is analyzed 
in Section 4.5. 

We denote the 𝑖0-th row vector of the matrix 𝐹 by 
𝒇𝑖0 , which is the real world distribution at current state. We 
evaluate the estimation accuracy by the KL divergence of 
𝒇𝑖0
𝑁  from 𝒇𝑖0

𝐻 . It is a standard measure of the difference 
between the two distributions and defined as 

𝐷𝐾𝐾�𝒇𝑖0
𝑁 �𝒇𝑖0

𝐻 � ≔� 𝑓𝑖0,𝑗
𝑁

𝑛

𝑗=1
ln�

𝑓𝑖0,𝑗
𝑁

𝑓𝑖0,𝑗
𝐻 �. (19) 

When the two distributions are exactly equal, KL 
divergence is equal to zero. We also have the same 
conclusion in the cases of evaluating entire matrix and 
using a different criteria such as Euclidean distance. Hence, 
we show only the result using 𝐷𝐾𝐾�𝒇𝑖0

𝑁 �𝒇𝑖0
𝐻 � hereafter. 

 
4.2 Hypothetical Data 
 

We give the hypothetical matrix 𝛷𝐻  and 𝐹𝐻  as 
plausible as possible used in the analysis. 

The matrix 𝛷𝐻 is generated by assuming TAIEUT 
investor who has a CRRA utility function 𝑈(𝑐) =
𝑐1−𝛾𝑅/(1 − 𝛾𝑅). 𝛾𝑅  is relative risk aversion. Assuming 
TAIEUT investor, 𝜙 can be decomposed into U and 𝛿 
shown in Equation (4). So, we can denote the (𝑖, 𝑗) 
element of 𝛷𝐻 by 

𝜙𝑖,𝑗𝐻 = 𝛿 �
1 + 𝑟𝑗
1 + 𝑟𝑖

�
−𝛾𝑅

 (𝑖, 𝑗 = 1, … ,𝑛). (20) 

𝛾𝑅 = 3 and 𝛿 = 0.999 are used in the base case. 
The matrix 𝐹𝐻  is generated from the S&P 500 

historical data. We set a reference date, and calculate 
returns from the reference date to the twelve dates which 

are set as every 30 calendar days. If it is a holiday, the day 
before a holiday is used. A matrix is generated by counting 
the number of state transitions in one period from the return 
sequence. Denote the return of state 𝜃𝑗 by 𝑟𝑗 in the matrix, 
which is discretely described by every 2%. When a real 
historical return is between 𝑟𝑗 − 1% and 𝑟𝑗 + 1%, it is 
assigned to state 𝜃𝑗. A return more than or equal to 29% 
(less than or equal to −29% ) are assigned to 30% 
(−30%). This is repeated daily by changing the reference 
date from Jan 3, 1950 to Jan 3, 2014. Then, all the matrices 
are summed up. Finally, each element of summed matrix is 
divided by each sum of the row elements to make it 
probability matrix. 

The optimization problem in Step 2 is still ill-posed 
because the condition number of 𝐴𝐻 calculated backward 
using 𝛷𝐻  and 𝐹𝐻  is very large, and 3.3 × 1016 . The 
numerical results are calculated using random noises for the 
specific random seed, but we derive the similar conclusions 
for the different seeds. 

 
4.3 Base Case 

 
Figure 3 displays the KL divergence with the 

proposed method and Tikhonov method for different values 
of 𝜁  where  𝜁 = 10−14, 10−13.6, … , 101.6, 102 . The KL 
divergence of 𝒒𝑖0

𝐻  from 𝒇𝑖0
𝐻 , 𝐷𝐾𝐾�𝒒𝑖0

𝐻 �𝒇𝑖0
𝐻 �, is shown as 

"RND" (Risk Neutral Distribution). 𝒒𝑖0
𝐻  is the most 

accurate distribution when we estimate the forward looking 
distribution in risk neutral probability framework. Getting a 
smaller KL divergence than RND is one of the important 
points to judge that a real world distribution estimator is 
good. 

Firstly, we discuss about the results of the case of 
𝜎 = 0%  wh ere  𝑆𝑁  i s  o b se r ved  wi t h o ut  no i s e . 
Theoretically, the KL divergence where 𝜁 = 0 becomes 
zero because the distribution estimated without using 
regularization methods equals the original distribution. 
However, the estimated KL divergence is 0.273 due to the 
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calculation error. This shows that how it is difficult to get 
an accurate estimator of ill-posed problem. Using the 
proposed method, the minimum KL divergence is 
2.65 × 10−3  where 𝜁 = 10−9.2  and the estimation 
accuracy is improved drastically. In addition, the proposed 
method stabilize the estimators by achieving them closer to 
RND as 𝜁 gets larger. Using the Tikhonov method, the KL 
divergence is also improved to 0.134 where 𝜁 = 10−2.4. 
However, the KL divergence with proposed method is 
always lower than that with the Tikhonov method in any 𝜁. 

We check the cases with noise (𝜎 = 1%, 2%, 5%). 
For small 𝜁 , the estimation accuracy significantly 
deteriorate, compared with no noise case ( 𝜎 = 0% ), 
because the problem is still ill-posed. The KL divergences 
decrease in both regularization methods, as 𝜁 is greater to 
some extent. The result indicates that it is effective to 
introduce the regularization term in order to stabilize the 
solution, and the estimation accuracy in proposed method is 
better than Tikhonov method for any 𝜁. We find the low 
bias estimator is derived by the proposed method because 
the regularization term is configured more appropriately 
using the prior information. 

 

4.4 Robustness Check 
 
We check the robustness of the result in the base case 

by using the different hypothetical data from the base case. 
Figure 4a indicates the relationship between the 
regularization parameter 𝜁 and KL divergence where we 
use 𝛿 = 0.995. Figure 4b shows the result of 𝛾𝑅 = 10. 
Figure 4c displays the case of the CARA utility function 
with 𝛾𝐴 = 3  and Figure 4d shows the result of 𝐹𝐻 
estimated from Nikkei225 historical data of the same 
period in place of S&P500. These results show that the 𝛿 
and utility function type are not sensitive to the KL 
divergence, but 𝛾𝑅 and 𝐹𝐻 are sensitive to the shapes of 
graph. The following two features observed in the base case 
are preserved in any case. Firstly, the estimators using the 
proposed method or the Tikhonov method are more 
accurate than the estimators without regularization. 
Secondly, the estimation accuracy of proposed method is 
better than the Tikhonov method. The impact of 
hypothetical data change is not so big, and it is expected to 
get the similar results in most cases, as long as we use the 
plausible hypothetical data. However, the further analysis is 
required to demonstrate the robustness.
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Figure 5: The case where 𝑚 < 𝑛: KL divergence of 𝒇𝑖0
𝑁  from 𝒇𝑖0
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4.5 The Case where 𝒎 < 𝒏 
 

The analysis is done with 𝑚 = 31 so far. However, 
the number of option maturities traded typically in the 
market is less than 31. For instance, the number of S&P500 
option maturities traded every month regularly in Chicago 
Board Options Exchanges is 12, and the number of Nikkei 
225 option in Osaka Exchange is 9. In addition, m of 
𝑆  estimated from market data will be smaller because long-
term options are likely to have low liquidity. We conduct 
the analysis for the case where the number of maturities 
(data) m is less than the number of states (estimated 
variables) n.4 More specifically, we estimate the real world 
distribution under the 31 states and three kinds of the 
numbers of column of 𝑆 (𝑚 = 6, 12, 31) by the proposed 
method, and calculate their KL divergences. 

Figure 5a shows the result of 𝜎 = 0%. Even in the 
cases of 𝑚 = 6 and 12, the variables can be estimated as 
accurately as the case of 𝑚 = 31.  The similar result is 
obtained in the case of 𝜎 = 1% in Figure 5b as well. It 
might be considered that it is impossible to get the accurate 
estimators since the number of data is less than the number 
of estimated variables. However, we can estimate the 
accurate estimators using the proposed method. This is 
because the prior information included in the regularization 
term offsets the insufficient information. In other words, all 
necessary information concerning investor's risk 
preferences is almost included in the matrix of six columns 
to estimate the real world distribution from the state price 
matrix. 
 
 

                                            
4 Usually, n should be less than m to estimate variables   
under the sufficient data. Therefore, the case in this section 
is analyzed under the insufficient uncertainty. 

 
4.6 Selecting Regularization Parameter 

 
We evaluate the estimation accuracy for various 

regularization parameters 𝜁 , using the KL divergence.  
However, it is difficult to choose an appropriate value of 𝜁 
as a practical matter.  Then, we propose a method of how 
to select 𝜁 to get the accurate estimates of the real world 
distribution.  

The objective function of optimization problem in 
Step 2 is Equation (14), and it consists of two parts. The 
first term shows the fitting error, and denote it by 𝑦𝑓𝑖𝑓, 
whereas the second term except 𝜁  shows the deviation 
between 𝑃𝑁  and 𝑃𝑁���� , and denote it by 𝑦𝑇𝑇𝑟 .We show 
them for the various 𝜁 in Figure 6. As 𝜁 increases, 𝑦𝑓𝑖𝑓 
decreases and 𝑦𝑇𝑇𝑟  increases monotonically. Both 𝑦𝑓𝑖𝑓 
and 𝑦𝑇𝑇𝑟 have the domain where the values greatly change. 
For example, in the case of 𝜎 = 1%, the value of 𝑦𝑓𝑖𝑓 
greatly changes around 𝜁 = 10−6 and 𝑦𝑇𝑇𝑟 around 𝜁 = 1. 
This is one of the characteristics of the ill-posed problem. 
The purpose of using regularization term in the ill-posed 
problem is to find the optimal solution stably among the 
degenerated solutions which have almost the same fitting 
error, based on the prior information. Therefore, the sound 
strategy is to select 𝜁 in the ranges where both 𝑦𝑓𝑖𝑓 and 
𝑦𝑇𝑇𝑟  are relatively small.  In the case of Figure 6, the 
appropriate value of 𝜁 is between about 10−4 and 10−2. 
In consideration of the fact that the range of 𝑦𝑓𝑖𝑓  is 
different from the range of 𝑦𝑇𝑇𝑟, we propose the method of 
selecting 𝜁 by minimizing the function ℎ(𝜁) defined as, 

ℎ(𝜁): =
𝑦𝑓𝑖𝑓(𝜁) − 𝑦𝑓𝑖𝑓(0)
𝑦𝑓𝑖𝑓(∞) − 𝑦𝑓𝑖𝑓(0)

+
𝑦𝑇𝑇𝑟(𝜁) − 𝑦𝑇𝑇𝑟(∞)
𝑦𝑇𝑇𝑟(0) − 𝑦𝑇𝑇𝑟(∞)

 (21) 

𝑦𝑓𝑖𝑓(𝜁) and 𝑦𝑇𝑇𝑟(𝜁) are functions of 𝜁  as shown in 
Figure 6. ℎ(𝜁) is the sum of the normalized values.  𝑦(0) 
is the value without the regularization term and 𝑦(∞) is 
the value derived under the condition that 𝑃𝑁 = 𝑃𝑁����. So, 
𝑦𝑇𝑇𝑟(∞) = 0  must  ho ld .  Moreover,  ℎ(0) = 1  and 
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ℎ(∞) = 1 must hold because both 𝑦𝑓𝑖𝑓(𝜁) and 𝑦𝑇𝑇𝑟(𝜁) 
are monotonic functions. We obtain the different values of 
ℎ(𝜁) by solving the optimization problems for the different 
values of 𝜁, and then we can adopt the 𝜁 that minimizes 
ℎ(𝜁) .  

We show the function values of ℎ(𝜁) and the KL 
divergences for various values of 𝜁 in the base case in 
Figure 7. In the range of small ℎ(𝜁), the KL divergence is 
also small in each case where 𝜎 = 1%, 2%, 5% . It 
indicates that 𝜁 can be selected well by using ℎ(𝜁). Our 
selection method could select appropriate values of 𝜁 in 
most cases even for different hypothetical data, and we can 
find it effectively.5 
 
5. CONCLUSION 
 

The Recovery Theorem makes it possible to estimate 
the real world distribution implied in option prices. 
However, it is not easy to find accurate estimators because 
it is necessary to solve the ill-posed problem in the 
estimation process. This paper proposes the method to 
estimate the real world distribution accurately, and then 
analyzes how accurate the estimation is by numerical 
analysis using hypothetical data. 

We clarify the following three points through the 
analysis. First, the regularization method like Tikhonov or 
our method used in Step 2 improves the estimation 
accuracy. This is because the regularization term enables us 
to suppress the effect of perturbation such as numerical 
error and data noise. Second, our method can estimate the 
real world distribution more accurately than the Tikhonov 
method, because our method could introduce more 
adequate regularization term, based on the prior 
information. Last, we find the fact that we derive the 
estimators accurately by our method to some extent even if 
the number of maturities of option is less than the number 
of states. It is sufficient to provide the six maturities of 
options in order to solve the problem with 31 states 
appropriately. This is likely to be less than the number of 
maturities of option traded in the market. The result 
suggests the possibility of obtaining the good estimator of 
the real world distribution from option prices traded in the 
market.  

Future works are as follows, (1) checking the 
                                            
5 We may need to compare it with alternative methods.  
For instance, the following function is considered,  

ℎ(𝜁) ≔ max�
𝑦𝑓𝑖𝑓(𝜁) − 𝑦𝑓𝑖𝑓(0)
𝑦𝑓𝑖𝑓(∞) − 𝑦𝑓𝑖𝑓(0) ,

𝑦𝑇𝑇𝑟(𝜁) − 𝑦𝑇𝑇𝑟(∞)
𝑦𝑇𝑇𝑟(0) − 𝑦𝑇𝑇𝑟(∞)� (22) 

However, we could select better 𝜁 slightly using Equation 
(21), rather than Equation (22). Comparing with other 
alternatives is our future research. 

robustness of the result under more various conditions and 
hypothetical data, and (2) estimating a forward looking real 
world distribution from time-series option data with our 
proposed method and testing the predictability. 
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