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Abstract

The well-known mean-variance model and the downside risk model are used to investment
decision problems for portfolio selection. The downside risk model uses the risk measure that
focuses on return dispersions below a speciåc target, In this paper, an alternative downside
risk model to the Mean/Lower Partial Moment model(MLPM model) proposed by Bawa
et al. is proposed. The new downside risk model is called the Mean/Open-L Deviation
model(MOLD model). While the MOLD model is similar to the MLPM model formulated
as a nonlinear programming model, the following characteristics are mainly introduced. (1)
The MOLD model is formulated as a linear programming model. (2) The risk measure 'OLD'
is understandable, which is the weighted sum of the average shortfall below a speciåc target
and the maximum shortfall. In addition, the relationship between the risk parameter of the
MOLD model and that of the MLPM model is designated. The MOLD model proposed in
this paper is characterized and is compared with the MLPM model using historical data of
Tokyo Stock Exchange. The results show that the characteristics which do not exist in the
MLPM model can be found in MOLD model, whereas portfolios selected using the MOLD
model are similar to those of the MLPM model.
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1 Introduction

There are many mathematical programming approaches to the portfolio selection prob-

lems; the mean-variance model by Markowitz [10], the mean-absolute deviation(MAD) model

by Konno [8], the MAD-skewness model by Konno and Yamazaki [9], the safety årst model, and

the downside risk model. The downside risk approach uses an intuitive measure of risk. The

return dispersions below a speciåed target, or the target shortfall is deåned as the downside risk

measure. Bawa and Lindenberg [2] show the Mean-Lower Partial Moments (MLPM) model.

The risk measure, called the lower partial moments (LPM), is described as;

LPMk(rG) =
Z rG

Ä1
(rG Ä ~r)kf(~r)d~r; (1)

where rG is the target return, ~r is the stochastic variable of return, and f(~r) is the probability

density function. The type of moment, k, speciåed in Equation (1) captures an investor's

preference in terms of the downside risk. Given historical data or scenarios, LPMk(rG) is

rewritten as;

LPMk(rG) =
1

T

TX
t=1

n
max(rG Ä rt; 0)

ok
; (2)

where t is the time or the state, and rt is the return at time(state) t. Let n be the number of

assets, xj be the proportion invested in the jth asset, rj;t be the tth return of the jth asset,

and rE be the expected return required by the investor. The portfolio selection problem in the

MLPM framework is formulated as in Program 1.

【 Program 1 】

minimize LPMk(rG) =
1

T

TX
t=1

n
max(rG Ä rt; 0)

ok
(3)

subject to rt =
nX
j=1

rj;t Åxj ; (t = 1; . . . ; T ) (4)

1

T

TX
t=1

rt ï rE (5)

nX
j=1

xj = 1 (6)

xj ï 0; (j = 1; . . . ; n) (7)

Figure 1 depicts the indiãerence curves of LPMk(rG; r1; r2) for T = 2. The return on the

portfolio r1 at time 1 is on the horizontal axis, and the return r2 at time 2 is on the vertical

axis.
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Figure 1: The indiãerence curves of LPMk(rG; r1; r2) for T = 2

In the case of k = 1,

LPM1(rG; rG; 0) = LPM1(rG; 0; rG) = LPM1(rG;
1

2
rG;

1

2
rG):

These pairs of (r1, r2) on the line, such as point E, point F, and point G, are indiãerent. In the

case of k = 2,

LPM2(rG; rG; 0) = LPM2(rG; 0; rG) = LPM2(rG;

í
1Ä 1p

2

ì
rG;

í
1Ä 1p

2

ì
rG):

These pairs of (r1, r2) on the curve, such as point E, point F, and point H, are indiãerent.

The MLPM model of k = 1 is formulated as a linear programming problem, that of k = 2 is

formulated as a quadratic programming problem, and that of k ï 3 is formulated as a nonlinear

programming problem. The MLPM model of k = 1 is formulated as a linear programming

model, because the indiãerence curve of k = 1 is the L-shaped curve, or a piecewise lenear

curve.

In this paper, we propose an alternative downside risk model to the MLPM model, and call

it the Mean{Open-L Deviation (MOLD) model. The MOLD model has the mixed objective

function of k = 1 of the MLPM model and k = 1, and substitutes for the nonlinear objective

function of the MLPM model when k ï 2. Since the objective function of k = 1 is mixed with

the linear objective function of k =1, the MOLD model is formulated as a linear programming

problem. While the MOLD model is similar to the MLPM model formulated as a nonlinear

programming model, the following characteristics are mainly introduced.

　 (1) The MOLD model is formulated as a linear programming model.

　 (2) The risk measure 'OLD' is understandable, which is the weighted sum of the average

shortfall below a speciåc target and the maximum shortfall.

　 (3) The risk parameter ï is introduced in order to designate the investor's preference with

respect to the downside risk.
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The paper is organized as follows. Section 2 introduces the formulation of the MOLD model.

Section 3 discusses the relationship between the risk parameter ïof the MOLD model and k of

the MLPM model. Sections 4 and 5 present numerical tests using historical data of Tokyo Stock

Exchange. The MOLD model is analyzed and is compared with the MLPM model. Section 6

provides some concluding remarks and our future research.

2 The Mean{Open-L Deviation (MOLD) model

Figure 2 also depicts the indiãerence curves of LPMk(rG; r1; r2) and open-L shaped curve

for T = 2, as in Figure 1. We describe the relationship between the MLPM model and the

MOLD model.

Figure 2: The indiãerence curves of LPMk(rG) and the Open-L shaped curve

The line A(k = 1) and the L-shaped curve D(k = 1) combine into the piecewise linear

curve(B) in order to substitute for the indiãerence curve C(k = 2) of LPMk(rG; r1; r2). We

call this piecewise linear curve the open-L shaped curve 2 . The piecewise linear curve cannot

exactly åt the indiãerence curve of the MLPM model. However, the investor's preference of the

MOLD model can substitute for that of the MLPM model by changing the risk parameter ï,

corresponding to the risk parameter k. We call this alternative model the MOLD model. The

MOLD model is formulated as in Program 2 :

【 Program 2 】

minimize OLDï(rG) = (1Äïk)Å
(

1

T

TX
t=1

max(rG Ä rt; 0)

)
+ïk Åmax

t
fmax(rG Ä rt; 0) ; t = 1; . . . ; Tg (8)

subject to Equations(4) through (7)

2The objective function for the open-L shaped model of goal vector approach is the open-L shaped function [4].
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where (1Äïk) is the proportion of LPM1, and ïk is the proportion of LPM1. The parameter

ïk provides the investor's risk preference. ïk = 0 of the MOLD model corresponds to k = 1 of

the MLPM model, and ïk = 1 of the MOLD model corresponds to k =1 of the MLPM model.

The risk measure is deåned as OLDï(rG). Program 2 is rewritten to the linear programing

problem (Program 3) :

【 Program 3 】

minimize OLDï = (1Äïk)Å
†

1

T

TX
t=1

dÄt

!
+ïk Åd (9)

subject to
nX
j=1

(rj;t Ä rG)Åxj + dÄt ï 0; (t = 1; . . . ; T ) (10)

dÄt Ä d î 0; (t = 1; . . . ; T ) (11)
nX
j=1

Rj Åxj ï rE (12)

nX
j=1

xj = 1 (13)

xj ï 0; (j = 1; . . . ; n) (14)

dÄt ï 0; (t = 1; . . . ; T ) (15)

d ï 0 (16)

where Rj =
1

T

TX
t=1

rj;t, and rt =
nX
j=1

rj;t Åxj . dÄt = max(rG Ä rt; 0), and d = max
t

dÄt result from

Program 3.
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3 Modelling the relationship between the risk parameters ï
and k

We explain the derivation of ï(k; T ) when the open-L shaped curve(B) of the MOLD model

substitutes for the indiãerence curve(C) of the MLPM model in Figure 2. Figure 3 depicts the

derivation of the risk parameter ïof the MOLD model, corresponding to k of the MLPM model.

Figure 3: The derivation of the risk parameter ïof the MOLD model, corresponding to k of the
MLPM model

We calculate LPMk on the two points of the curve C, as follows;

　 (1) When only one of the returns is equal to 0, and the others are equal to rG, LPMk(rG) =
1
T Å(rG)k.

　 (2) When rt = rG Ä h(k; T ) for all t, LPMk(rG) = fh(k; T )gk.
Since two points on the curve C are indiãerent, fh(k; T )gk = 1

T Å(rG)k. Thus h(k; T ) in

Figure 3 can be calculated as in Equation (17).

h(k; T ) = k

r
1

T
ÅrG (17)

Since ï(k; T ) can be calculated using h(k; T ) as in Equation (18), Equation (19) can be

derived.

ï(k; T ) =
h(k; T )Ä h(1; T )

rG Ä h(1; T )
(18)

=
1

T Ä 1
Å
í
T
k
p
T
Ä 1

ì
(19)
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Figure 4 depicts the relationship between ïand k for the various number of data T .

Figure 4: The relationship between ïand k

If k is constant, the larger T is, the smaller ï is. We need to evaluate the maximum value

of dÄt , depending on the value of T .

4 Numerical tests for the MOLD model

4.1 Data set and the parameters

We test the MOLD model using historical data of Tokyo Stock Exchange. Monthly data of

stock returns are collected for four three-years listed in Table 1.

Table 1: Data period and the number of stocks

Data period (36 months) the number of stocks

Period A January 1988 { December 1990 1,078

Period B January 1989 { December 1991 1,109

Period C January 1990 { December 1992 1,140

Period D January 1991 { December 1993 1,173

We choose some parameters : three kinds of target returns (rG = 0:0%; 0:2%; 0:4%), two

kinds of required expected returns (rE = 0:0%; 0:5%), and two kinds of the upper limit invested

in each stock (Uj = 100%(NUL: No Upper Limit), 5%). The twelve combination of the param-

eters are analyzed. All of the problems are solved with XPRESS-MP(LP solver) for the MOLD

model.

4.2 The relationship between the risk parameter ïand the indices of returns

We change the risk parameter ïparametrically at intervals of 0.01 from 0 through 1. 101

kinds of ïare tested.
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First, we show six kinds of statistics in Figure 5 : mean, standard deviation, skewness,

kurtosis, maximum, and minimum. Each statistics is calculated at each upper limit (NUL,

Uj = 5%), and it is the average of 24 statistics, or six kinds of parameters (rG Ç rE) multiplied

by four periods.

Figure 5: Statistics of returns

The minimum return is large, or the maximum target shortfall is small when the risk pa-

rameter ïis large. This is the reason that the maximum target shortfall aãects the risk measure

(OLD) largely when ï is large. The minimum returns are explicitly large when ï= 0 through

ï= 0:1. However, they are saturated when ïï 0:1. The skewness tends to be large when ï is

large. The minimum return aãects the skewness. Whether the upper limit is included or not

aãects the results.

Next, we show the other indices of returns in Figure 6 3 : OLD, number of invested stocks,

maximum proportion, average target shortfall, number of periods to be maximum target shortfall

(# of periods[max. shortfall]), and number of periods below the target (# of periods[shortfall]).

3Indices are deåned as follows;

　　è number of invested stocks = fnumber of jjxj > 0g
　　è maximum proportion = max

j
xj

　　è average target shortfall =
1

T

TX
t=1

dÄt

　　è # of periods[max. shortfall] = fnumber of tjdÄt = max
s
dÄs g

　　è # of periods[shortfall] = fnumber of tjdÄt > 0g
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Figure 6: The other indices of returns

The average target shortfall is large (small) while the minimum return is large (small), that

is, the maximum target shortfall is small (large). This reason is that both indices are included

in the objective function, and these have the trade-oã relationship. The users of the MOLD

model should notice this relationship. We can ånd the following information. When the risk

parameter ï is large,

　è the minimum return is large, or the maximun target shortfall is small,

　è the average target shortfall is large,

　è the standard deviation and the skewness tend to be large,

　è the number of the periods of the maximum target shortfall tends to increase,

　è the number of the periods below the target, or the probability below the target, tends to

increase.

We cannot characterize the number of invested stocks and the maximum proportion.

4.3 The relationship between the risk parameter ï and the proportion in-
vested in the stocks

The relationship between ïand the proportion is discussed in the period D (January 1991

{ December 1993). Table 2 shows the average of 101 kinds of proportions derived by solving the

problems with ï at intervals of 0.01 from 0 through 1. The numbers in the årst (left) column

are the security codes of invested stocks.
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Table 2: The average of the proportions

UL NUL NUL NUL NUL NUL NUL 5% 5% 5% 5% 5% 5% NUL 5%

rE = 0.5 0.5 0.5 1.0 1.0 1.0 0.5 0.5 0.5 1.0 1.0 1.0 total
rG = 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 average average average

8529 19.74% 18.87% 18.31% 11.54% 11.20% 10.66% 5.00% 5.00% 5.00% 4.89% 4.90% 4.90% 15.051% 4.949% 10.000%
7269 9.32% 9.13% 9.60% 12.07% 12.24% 12.69% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 10.841% 5.000% 7.921%

6332 5.19% 5.17% 4.70% 13.75% 13.76% 13.00% 4.73% 4.69% 4.68% 5.00% 5.00% 5.00% 9.262% 4.849% 7.055%

8182 9.24% 9.29% 9.39% 8.73% 8.90% 8.98% 5.00% 5.00% 5.00% 4.70% 4.65% 4.55% 9.087% 4.817% 6.952%

8273 6.58% 6.93% 7.54% 8.46% 8.85% 9.59% 4.99% 4.93% 4.75% 5.00% 5.00% 5.00% 7.990% 4.943% 6.467%
8196 6.60% 6.13% 5.55% 10.57% 9.86% 9.40% 4.73% 4.67% 4.62% 4.46% 4.49% 4.60% 8.016% 4.592% 6.304%

9508 7.44% 7.15% 6.69% 7.93% 7.83% 7.29% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 7.387% 5.000% 6.194%

2810 1.16% 1.97% 3.49% 5.51% 6.10% 7.72% 5.00% 5.00% 5.00% 5.00% 5.00% 4.99% 4.325% 4.998% 4.662%

6783 5.51% 5.42% 5.36% 4.17% 4.11% 4.05% 4.89% 4.93% 4.97% 3.87% 3.80% 3.96% 4.769% 4.403% 4.586%

8536 9.71% 9.98% 9.82% 0.22% 0.22% 0.40% 5.00% 5.00% 5.00% 0.52% 0.62% 1.15% 5.059% 2.880% 3.969%
8530 4.94% 4.89% 5.24% 0.13% 0.23% 0.30% 5.00% 5.00% 5.00% 4.02% 4.01% 3.77% 2.622% 4.466% 3.544%

8551 3.69% 4.20% 3.91% 0.00% 0.01% 0.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 1.969% 5.000% 3.484%

2212 0.00% 0.08% 0.04% 3.64% 4.13% 4.35% 4.52% 4.45% 4.32% 5.00% 5.00% 5.00% 2.040% 4.715% 3.377%

8264 1.41% 1.68% 1.78% 1.68% 1.51% 1.22% 3.80% 3.28% 2.78% 4.79% 4.45% 4.00% 1.546% 3.850% 2.698%
9507 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.88% 3.85% 3.95% 5.00% 5.00% 5.00% 0.000% 4.445% 2.222%

9665 0.01% 0.00% 0.00% 2.81% 2.50% 1.90% 0.71% 0.72% 0.75% 4.75% 4.64% 4.52% 1.202% 2.681% 1.941%
5110 0.36% 0.45% 0.51% 0.29% 0.24% 0.19% 3.06% 2.70% 2.27% 3.97% 3.84% 3.54% 0.339% 3.230% 1.785%

8395 1.40% 1.23% 1.56% 4.12% 4.46% 4.56% 0.10% 0.10% 0.06% 0.21% 0.13% 0.23% 2.887% 0.139% 1.513%

8350 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.20% 3.28% 3.47% 2.24% 2.35% 2.21% 0.000% 2.790% 1.395%

8165 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.47% 1.71% 1.98% 3.03% 3.26% 3.43% 0.000% 2.480% 1.240%
8183 2.17% 1.56% 0.87% 2.14% 1.31% 0.35% 0.18% 0.40% 0.48% 1.85% 1.52% 1.55% 1.398% 0.997% 1.198%

9735 1.35% 1.87% 1.74% 0.00% 0.07% 0.24% 0.89% 1.07% 1.21% 1.29% 1.86% 1.92% 0.879% 1.372% 1.126%

1924 0.42% 0.30% 0.08% 0.01% 0.07% 0.08% 0.00% 0.00% 0.00% 3.76% 4.26% 4.21% 0.161% 2.039% 1.100%

4536 3.25% 2.89% 2.59% 0.07% 0.01% 0.07% 0.40% 0.44% 0.55% 0.79% 0.74% 0.76% 1.480% 0.614% 1.047%
8018 0.39% 0.42% 0.67% 0.11% 0.45% 0.71% 2.31% 3.19% 3.92% 0.00% 0.00% 0.19% 0.457% 1.602% 1.030%

The parameters rE and rG aãect the invested proportions explicitly. Table 3 indicates the

diãerence.

Table 3: The diãerence of the proportions

SDe SDg

rE = 0:5% rE = 1:0% rG = 0:0% rG = 0:2% rG = 0:4%

NUL 1.87% 1.98% 9.45% 9.49% 9.30%

U = 5% 1.24% 0.85% 5.55% 5.60% 5.50%

SDe indicates the diãerence of proportions due to the target return, and SDg indicates the

diãerence of proportions due to the required expected return. Let xjeg denote the proportion

where j 2 J = fljxleg 6= 0g, e 2 f0:5%; 1:0%g, and g 2 f0:0%; 0:2%; 0:4%g. SDe and SDg are

calculated as follows :

SDe =
1

2

sX
j2J

(max
g
xjeg Ämin

g
xjeg)2 (20)

SDg =
1

2

sX
j2J

(max
e
xjeg Ämin

e
xjeg)2 (21)

Since all of SDg are larger than SDe, the required expected return rE aãects the proportions
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in comparison with the target return rG.

Next, consider the common proportions from ï= 0 through ï= ï0, where ï0 changes from

ï0 = 0 through ï0 = 1. Figure 7 depicts the common proportions at each upper limit in the

period D.

Figure 7: The common proportions in the period D (ï= 0～ï0)

When ï0 is large, the decrease of the common proportions is small, or proportions invested

in the stocks do not change even if the risk parameter ï changes. In the range from ï= 0

through ï= 0:1, the proportions change drastically. The maximum target shortfall aãects the

proportions in the range from ï= 0 to ï= 0:1. The common proportions with the upper limit

of 5% tend to be larger than those with no upper limit, and about 50% invested in the stocks

with the upper limit of 5% is common regardless of ï.

Figure 8 depicts the common proportions from ï = ï0 Ä ã to ï = ï0 + ã, where ã =

0:1; 0:05; 0:01. The period is D, and parameters are rE = 0:5% and rG = 0:0%. ï0 changes from

ï0 = 0 through ï0 = 1.

Figure 8: The common proportions from ï= ï0 Äã to ï= ï0 +ã
(period D, rE = 0:5%, rG = 0:0%)

The larger ï0 is, the larger the common proportion tends to be. The common proportion

exceeds 80% in the case of ï0 ï 0:25 and ã= 0:1. We can derive the useful information about

the sensitivity of proportions to the risk parameter ï.
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Figure 9 depicts the top six proportions of stocks with no upper limit in the period D. The

average proportions when using three kinds of target returns are shown.

Figure 9: The top six proportions of stocks

The information in Figure 9 helps the investors select their portfolio eãectively even if they

cannot determine the risk parameter (preference) explicitly.

4.4 The eécient frontier

Figure 10 depicts the eécient frontiers in the expected return{OLD space of the MOLD

model. There are the eécient frontiers to six kinds of ï, corresponding to k = 1 through

k = 5, and k = 1. Three curves from left to right show the frontiers in the case of rG =

0:0%; 0:2%; 0:4%, respectively.

Figure 10: The eécient frontiers of the MOLD model (period D)

We can designate the trade-oã relationship between return and risk, and make investment

12



decisions using the eécient frontiers of the MOLD model.

5 The comparison between the MOLD model and the MLPM
model

The MOLD model is compared with the MLPM model. We use the same data as in Section

4. The software NUOPT is used to solve the nonlinear programming problems (MLPM model).

5.1 The return distribution

Figure 11 depicts the frequency and the cumulative frequency of returns. Those are calcu-

lated using the optimal proportions. The period is D, rE = 0:5%, rG = 0:0%, and the upper

limit is not constrained. The top six graphs are the histograms of the MOLD model, the middle

six graphs are the histograms of the MLPM model, and the lower six graphs are the cumulative

frequency distributions, where the solid lines are for the MOLD model and the dotted lines are

for the MLPM model 4 。

Figure 11: The return histograms and the return cumulative frequency distributions
(period D, rE = 0:5%, rG = 0:0%, and no upper limit)

Histograms of both models look diãerent, while the cumulative frequency distributions of

both models look similar. The following results are obtained;

　 (1) the maximum target shortfall of the MOLD model is smaller than that of the MLPM

model,

　 (2) the number of periods below the target of the MOLD model is smaller than that of MLPM

model,

4More than 5% returns aggregate to 5% returns in the graphs.
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　 (3) the average target shortfall of the MOLD model tends to be smaller than that of the

MLPM model,

　 (4) the number of periods to be maximum target shortfall of the MOLD model is larger than

that of the MLPM model.

5.2 The proportions invested in stocks

Table 4 shows the proportions of the same stocks both models have in common. The average

proportions in six kinds of parameters are listed.

Table 4: The common proportions of the MOLD model and the MLPM model

No Upper Limit Upper Limit = 5%

(MLPM) k = 2 3 4 5 2 3 4 5

(MOLD) ï= 0:143 0:283 0:391 0:474 average 0:143 0:283 0:391 0:474 average

period A 96.34% 97.18% 96.25% 95.04% 96.20% 91.80% 88.06% 89.48% 89.04% 89.60%

period B 91.64% 93.88% 93.91% 93.85% 93.32% 84.46% 89.63% 89.50% 90.02% 88.40%

period C 84.89% 84.24% 84.98% 85.75% 84.96% 75.23% 78.17% 83.33% 88.41% 81.28%

period D 79.57% 79.07% 80.97% 79.42% 79.76% 83.57% 85.47% 88.99% 90.11% 87.04%

average 88.11% 88.59% 89.03% 88.52% 88.56% 83.76% 85.34% 87.82% 89.40% 86.58%

When k is large, both models tend to have the same stocks in common, or the common

proportions of both models are large. The common proportions are more than 80% on average.

Thus the MOLD model may alternate with the MLPM model when investors have the portfolio

under the downside risk criterion.

Next, Table 5 shows the common proportions between two values in each risk parameter.

The average proportions in six kinds of parameters in the period D are listed.
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Table 5: The common proportions between two values in each risk parameter (period D)

NUL ï= 0:143 ï= 0:283 ï= 0:391 ï= 0:474 MOLD

58.86% 54.86% 55.90% 55.90% ï= 0:000

k = 2 64.92% 82.07% 79.72% 79.68% ï= 0:143

k = 3 58.28% 89.00% 91.89% 91.96% ï= 0:283

k = 4 55.54% 84.90% 94.28% 98.74% ï= 0:391

k = 5 54.87% 83.40% 89.99% 94.93%

MLPM k = 1 k = 2 k = 3 k = 4

Uj = 5% ï= 0:143 ï= 0:283 ï= 0:391 ï= 0:474 MOLD

66.82% 60.93% 58.97% 57.71% ï= 0:000

k = 2 68.12% 88.25% 85.12% 83.66% ï= 0:143

k = 3 64.28% 90.96% 94.72% 93.00% ï= 0:283

k = 4 61.55% 85.63% 93.57% 97.12% ï= 0:391

k = 5 58.10% 82.40% 89.93% 95.40%

MLPM k = 1 k = 2 k = 3 k = 4

The right-upper triangles show the values of the MOLD model, and the left-lower triangles

show the values of the MLPM model. For example, 82.07% where ï= 0:143 and ï= 0:283

cross with no upper limit (NUL) is the common proportion in both risk parameter values of the

MOLD model. 89.00% where k = 2 and k = 3 cross with NUL is the common proportion in both

risk parameters of the MLPM model. When k ï 3, the common proportions are large. We can

also compare the MOLD model with the MLPM model in Table 5. The abovementioned 82.07%

of the MOLD model is compared with 89.00% of the MLPM model. Both models construct the

similar portfolio. The similar results can be obtained in the other periods.

5.3 The LPM values

We compare both models using the LPM values, rather than using the return distributions

and the invested proportions. We deåne k
p
LPMk as the LPM value of solving the MLPM

problem, and deåne k
p
LPM(k;ï) as the LPM value of solving the MOLD problem;

k
p
LPMk = k

vuut 1

T

TX
t=1

ê
dÄÉt;MLPM

ëk
; (22)

k
q
LPM(k;ï) = k

vuut 1

T

TX
t=1

ê
dÄÉt;MOLD

ëk
; (23)

where dÄÉt;MLPM is the target shortfall of solving the MLPM model, and dÄÉt;MOLD is that of

solving the MOLD model. Let min
ï

î
k
q
LPM(k;ï)

ï
denote the minimum value of 101 kinds

of k
p
LPM(k;ï) of solving the MOLD model at intervals of 0.01 from ï= 0 through ï= 1.

We evaluate the diãerence between LPM values of the MOLD model and those of the MLPM
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model;

DVk =
k
p
LPM(k;ïk)Ä k

p
LPMk

k
p
LPMk

= DV
(1)
k +DV

(2)
k ; (24)

DV
(1)
k =

min
ï

î
k
q
LPM(k;ï)

ï
k
p
LPMk

Ä 1; (25)

DV
(2)
k =

k
p
LPM(k;ïk)Ämin

ï

î
k
q
LPM(k;ï)

ï
k
p
LPMk

: (26)

DV
(1)
k is the diãerence rate caused by approximating the MLPM model to the linear model,

and DV
(2)
k is the diãerence rate caused by the relation model between ï and k, or Equation

(19). Table 6 shows the values of DV
(1)
k and DV

(2)
k . The average of six kinds of these values are

listed.

Table 6: The diãerence rate of LPM values

No Upper Limit Uj = 5%

k = 2 k = 3 k = 4 k = 5 average k = 2 k = 3 k = 4 k = 5 average

period A DV
(1)
k 5.39% 3.91% 3.41% 3.27% 4.00% 10.01% 8.36% 7.33% 5.73% 7.86%

DV
(2)
k 0.72% 0.92% 1.69% 0.17% 0.88% 0.29% 1.69% 0.74% 0.88% 0.90%

DVk 6.11% 4.83% 5.11% 3.44% 4.87% 10.30% 10.05% 8.07% 6.60% 8.75%

period B DV
(1)
k 4.45% 3.57% 3.42% 2.84% 3.57% 5.75% 3.87% 3.21% 2.86% 3.92%

DV
(2)
k 1.51% 0.54% 0.46% 0.43% 0.73% 3.91% 0.27% 0.84% 1.01% 1.51%

DVk 5.96% 4.11% 3.88% 3.27% 4.30% 9.66% 4.14% 4.05% 3.87% 5.43%

period C DV
(1)
k 3.47% 3.47% 2.99% 2.64% 3.14% 6.45% 6.03% 4.79% 3.87% 5.28%

DV
(2)
k 0.47% 0.79% 0.59% 0.26% 0.53% 1.33% 2.12% 1.50% 0.84% 1.45%

DVk 3.94% 4.26% 3.58% 2.90% 3.67% 7.78% 8.15% 6.29% 4.70% 6.73%

period D DV
(1)
k 3.73% 2.50% 2.25% 2.02% 2.63% 4.48% 3.61% 2.90% 2.56% 3.39%

DV
(2)
k 1.46% 1.25% 1.03% 1.26% 1.25% 1.17% 0.53% 0.70% 0.96% 0.84%

DVk 5.19% 3.76% 3.27% 3.28% 3.87% 5.65% 4.13% 3.60% 3.52% 4.23%

average DV
(1)
k 4.26% 3.37% 3.02% 2.69% 3.33% 6.67% 5.47% 4.56% 3.75% 5.11%

DV
(2)
k 1.04% 0.87% 0.94% 0.53% 0.85% 1.67% 1.15% 0.95% 0.92% 1.17%

DVk 5.30% 4.24% 3.96% 3.22% 4.18% 8.35% 6.62% 5.50% 4.67% 6.29%

The MOLD model alternates the MLPM model by only using one risk parameter. Thus,

it cannot approximate the MLPM model precisely, as DV
(1)
k shows. We cannot derive the

minimized LPM by using the MOLD model when LPM value is used as the risk measure 5 .

We evaluate the relation model (Equation (19)) by DV
(2)
k . Since DV

(2)
k is about 1% of

k
p
LPMk, or about 20% of DVk, the relation model is a good model of showing the relationship

between ïand k.
5Notice that the MOLD model is developed to derive an alternative linear model in a downside risk framework.
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Let ïO(k) denote the ïvalue meeting min
ï

î
k
q
LPM(k;ï)

ï
. Table 7 shows ï(k; 36), ïO(k),

and the diãerence ïO(k)Äï(k; 36). The average of six kinds of these values are listed.

Table 7: ï(k; 36), ïO(k), and these diãerence

No Upper Limit Uj = 5%

k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5

ï(k; 36) 0:143 0:283 0:391 0:474 0:143 0:283 0:391 0:474

ïO(k)

period A 0:363 0:463 0:527 0:531 0:147 0:231 0:384 0:610

period B 0:220 0:343 0:460 0:521 0:280 0:307 0:333 0:350

period C 0:135 0:364 0:543 0:561 0:063 0:338 0:348 0:407

period D 0:302 0:452 0:527 0:578 0:175 0:535 0:587 0:613

average 0:255 0:406 0:514 0:548 0:166 0:353 0:413 0:495

ïO(k)Äï(k; 36)

period A 0:220 0:180 0:135 0:058 0:004 Ä0:052 Ä0:008 0:136

period B 0:077 0:060 0:069 0:047 0:137 0:024 Ä0:058 Ä0:124

period C Ä0:007 0:081 0:152 0:088 Ä0:080 0:055 Ä0:043 Ä0:067

period D 0:159 0:169 0:135 0:105 0:032 0:252 0:196 0:140

average 0:112 0:120 0:123 0:074 0:023 0:070 0:022 0:021

※ ïO(k) = fïjmin
ï

î
k
q
LPM(k;ï)

ï
Figure 12 depicts k

p
LPMk of the MLPM model (thin lines), and 101 kinds of k

p
LPM(k;ï)

of the MOLD model (bold lines) for the period D, rE = 0:5%, rG = 0:0%. The top four graphs

are in the case that the upper limit is not constrained, and the lower four graphs are in the case

that the upper limit is 5% constrained.

Figure 12: k
p
LPMk(thin lines) and k

p
LPM(k;ï)(bold lines)

The shapes of k
p
LPM(k;ï) curves are various, depending on the various periods and pa-

rameters.
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6 Conclusion

In this paper, we propose the MOLD model as an alternative portfolio selection model in

a downside risk framework. Since the objective function of the MOLD model is the weighted

sum of the objective function of l1 MLPM model and that of l1 MLPM model, the MOLD

model is a linear programming model. Thus, the MOLD model is easy to solve because of the

linear programming model, whereas the MOLD model is similar in risk preference to the MLPM

model. The risk parameter ï of the MOLD model corresponds to k of the MLPM model. We

model the relationship between ïand k.

We årst analyze the characteristics of the MOLD model using historical data in Tokyo Stock

Exchange. When the risk parameter ï is large, we can ånd the following information;

　è the minimum return is large, or the maximun target shortfall is small,

　è the average target shortfall is large,

　è the standard deviation and the skewness tend to be large,

　è the number of the periods of the maximum target shortfall tends to increase,

　è the number of the periods below the target, or the probability below the target, tends to

increase.

We cannot characterize the number of invested stocks and the maximum proportion.

We investigate the relationship between the risk parameter ïand the proportions invested

in stocks. The proportions change drastically when ï = 0 through ï = 0:1. However, the

proportions change a little when ïï 0:1. The information about the proportions are useful

when we decide how to invest in stocks. We also show the eécient frontiers in the expected

return and the OLD space.

Next, we compare the MOLD model with the MLPM model. Both return histograms look

diãerent, however the return cumulative frequency distributions of both models tend to be

similar. This reason is that the number of periods to be maximum target shortfall of the MOLD

model is larger than that of the MLPM model. The common proportions of both models are also

similar. While both models are similar, the MOLD model has the following unique features;

　 (1) the maximum target shortfall of the MOLD model is smaller than that of the MLPM

model,

　 (2) the number of periods below the target of the MOLD model is smaller than that of the

MLPM model,

　 (3) the average target shortfall of the MOLD model tends to be smaller than that of the

MLPM model,

　 (4) the number of periods to be maximum target shortfall of the MOLD model is larger than

that of the MLPM model.

When the investment manager recognizes these features as being important in order to

manage the downside risk, the MOLD model contributes to the risk management.

We compare both models using the LPM values. The MOLD model cannot approximate

18



to the MLPM model precisely. If we approximate the MLPM model precisely to the linear

programming model, we need to use the piecewise linear objective function to approximate the

MLPM model, instead of using the MOLD model. However, the MOLD model can alternate

the MLPM model by only one parameter.

The risk parameter ï can simply describe the detail risk preference. Equation (19) can be

rearranged, and k(ï;T ) can be derived ;

k(ï;T ) =
log T

log T Ä logf1 +ïÅ(T Ä 1)g : (27)

For example, k(0:2; 36) = 2:38.

We test the MOLD model numerically using historical stock data, because (1) the usual

portfolio selection problem is applied to stocks, and (2) the computational ability can be tested

for a large scale problem. However, we need to use other prediction data instead of historical

data. This is our future research in order to apply the downside risk model to selecting the stock

portfolio.
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