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Abstract

Institutional investors manage their strategic asset mix over time to achieve
favorable returns subject to various uncertainties, policy and legal constraints,
and other requirements. One may use a multi-period portfolio optimization
model in order to determine an optimal asset mix. The concept of scenar-
ios is typically employed for modeling random parameters in a multi-period
stochastic programming model, and scenarios are constructed via a tree struc-
ture. Recently, an alternative stochastic programming model with simulated
paths was proposed by Hibiki(2001b, 2003), and it is called a hybrid model.
The advantage of the simulated path structure compared to the tree structure
is to give a better accuracy to describe uncertainties of asset returns. In this
paper, we compare the two types of multi-period stochastic optimization mod-
els, and clarify that the hybrid model can evaluate and control risk better than
the scenario tree model using some numerical tests. According to the numeri-
cal results, an eécient frontier of the hybrid model with the åxed-proportion
strategy dominates that of the scenario tree model when we evaluate them on
simulated paths. Moreover, optimal solutions of the hybrid model are more
appropriate than those of the scenario tree model.

JEL classiåcation : C61; G11
Keywords : Multi-period model, Portfolio optimization, Asset allocation,

Simulation, Hybrid model

1 Introduction
Rational investors maximize the expected utility of return from their invest-
ment portfolio, or minimize their risk exposure of return, subject to their re-
quired expected return. They must decide on their optimal portfolio in securi-
ties in order to meet their satisfaction. This paper discusses optimal dynamic
investment policies for investors, who make an investment decision in each
asset category over time. This problem is called \dynamic asset allocation".

Asset allocation decisions are critical for investors with diversiåed portfolios.
Institutional investors must manage their strategic asset mix over time to
achieve favorable returns, in presence of uncertainties and subject to various
legal constraints, policies, and other requirements. A multi-period portfolio
optimization model can be used in order to determine an optimal asset mix.
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It is critical for stochastic modeling to handle uncertainties and investment
decisions appropriately. The decisions have to be independent from knowledge
of actual paths that will occur. Thus, we must deåne a set of decision variables
and a set of constraints to prevent an optimization model from being solved
by anticipating events in the future. In addition, we need a suécient number
of paths to get a better accuracy with respect to the future possible events.

The concept of scenarios is typically employed for modeling random parame-
ters in multi-period stochastic programming models. Scenarios are constructed
via a tree structure (see Mulvey and Ziemba, 1995 and 1998 for a detailed dis-
cussion). The model is based on the expansion of the decision space, taking
into account a conditional nature of the scenario tree. Conditional decisions
are made at each node, subject to the modeling constraints. To ensure that
the constructed representative set of scenarios covers the set of possibilities to
a suécient degree, the numbers of decision variables and constraints in the
scenario tree may grow exponentially. This model is called a scenario tree
model.

Recently, an alternative stochastic programming model using simulated paths
was proposed by Hibiki(2001b). Hibiki(2003) developed a general formulation
for several investment strategies, and highlighted its characteristics and prop-
erties by using some numerical tests. Scenarios are constructed via a simulated
path structure. We can generate sample paths associated with asset returns
using a Monte Carlo simulation method. The advantage of the simulated path
structure compared to the tree structure is to give a better accuracy to describe
uncertainties of asset returns. The model not only describes the uncertainties
on the simulated path structure but also makes conditional decisions on the
tree structure. Therefore, it is called a \hybrid" model 1 . It can be easily im-
plemented and eéciently solved using a standard mathematical programming
software package.

The hybrid model is developed to overcome the shortcoming of the scenario
tree model associated with uncertainties. Therefore, it is important to answer
the question how quantitatively the hybrid model is better than the scenario
tree model, which was not shown in the previous papers (Hibiki, 2001b and
2003). In this paper, we compare the two types of multi-period stochastic op-
timization models, and clarify that the hybrid model can evaluate and control
risk better than the scenario tree model by using some numerical tests.

We need the following developments to achieve our goal. At årst, we develop
an algorithm to solve the hybrid model with a åxed-proportion strategy, which
is formulated as a non-convex program. This is because the two kinds of
models should be compared using the same strategy. Secondly, we propose the
procedure of comparing them in the simulated path framework.

The paper is organized as follows. Section 2 presents the concept and for-
1Hibiki(2000 and 2001a) developed a simulated path model. The model also requires

simulated paths to have the accuracy of uncertainties, but it cannot make conditional deci-
sions. The hybrid model is allowed to expand the decision space and to make conditional
decisions as in the scenario tree model. The simulated path model is a special version of the
hybrid model.
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mulations of the two kinds of models, and develops the iterative algorithm
to solve the hybrid model with the åxed-proportion strategy. In Section 3,
we demonstrate a scenario generation process and a procedure of generating
an extended decision tree, and explain how to generate a scenario tree from
simulated paths. Section 4 presents some numerical tests for various cases to
compare the scenario tree model with the hybrid model. Section 5 provides
some concluding remarks and outlines our future research.

2 Multi-period stochastic programming mod-
els

2.1 Modeling for uncertainties and conditional deci-
sions

0 1 32

Scenario Tree

time

3
4

1
2

5
6

7
8

9
10

11
12

1 320

Simulated Paths

3
4

1
2

5
6

7
8

9
10

11
12

time

1 320

Bundling Simulated Paths

3
4

1
2

5
6

7
8

9
10

11
12

time

Figure 1: A scenario tree and simulated paths

Scenarios of asset returns are typically constructed via a tree structure in the
multi-period stochastic programming problem as in the left-hand-side of Figure
1. Meanwhile, 12 simulated paths over three periods give another description
of scenarios shown as in the middle of Figure 1.

Hibiki (2001b) developed the hybrid model in a multi-period optimization
framework. Discrete values of asset returns are generated by Monte Carlo
simulation to describe uncertainties more accurately than would the scenario
tree as in the left-hand-side of Figure 1. However, if a decision is made on
the associated path, the model is solved anticipating the event in the future.
Therefore, the rule that the same investment decision is made in similar states
is deåned to satisfy the non-anticipativity condition 2 in the simulated path.

2The condition which prevents an optimization model from being solved by anticipating
the future is called \ non-anticipativity condition".
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An investment strategy that the same decision is made in similar states is
called a \åxed strategy " in the simulated path approach. The word \åxed"
does not mean \buy and hold (strategy)", or \constant rebalance (strategy)".
Similar states at each time are bundled using one of some procedures shown in
Section 3.2. Several bundles are made on simulated paths at each time to have
the åxed strategy (decision rule) for risky assets 3 . An example of bundles,
or \åxed-decision nodes", is shown as in the right-hand-side of Figure 1. The
important idea is the generation of decision nodes via a tree structure, while
scenarios are generated via a simulated path structure. We call it an \extended
decision tree". The tree in Figure 1 is called a \3-2" branching tree, because
it has three bundles at time 1, and paths through any bundle at time 1 pass
two bundles at time 2.

2.2 Preparation
We invest in n risky assets and cash. The investment is made at time 0
(present), and time T is the planning horizon.

2.2.1 Notations

Some notations are used only in one model, and some are used in the both
models. We attach `[Scenario]' to the explanation of notations of the scenario
tree model, `[Hybrid]' to the hybrid model, and `[Both]' to the both models.
Notations are as follows.
(1) Sets
St : [Scenario] set of states at time t, (s 2 St),

: [Hybrid] set of åxed-decision nodes at time t, (s 2 St).
V s
t : [Hybrid] set of paths passing any åxed-decision node s at time t, (i 2
V s
t ).

(2) Parameters
ps : [Scenario] probability of scenario s at the planning horizon 4 .
I : [Hybrid] number of simulated paths.
öj0 : [Both] price of risky asset j at time 0, (j = 1; . . . ; n).
ösjt : [Scenario] price of risky asset j of state s at time t, (j = 1; . . . ; n; t =

1; . . . ; T ; s 2 St).
ö(i)
jt : [Hybrid] price of risky asset j of path i at time t, (j = 1; . . . ; n; t =
1; . . . ; T ; i = 1; . . . ; I).

r0 : [Both] interest rate in period 1, (the rate at time 0 is used).
rs0tÄ1 : [Scenario] interest rate in period t, which is the rate of the predecessor

state s0 at time tÄ 1 (of state s at time t), (t = 2; . . . ; T ; s0 2 StÄ1).
3The path-dependent decisions can be made to cash variables, because cash return is

risk-free at each time when we invest in assets.
4The scenario s corresponds to the state s at the planning horizon.
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r(i)
tÄ1 : [Hybrid] interest rate in period t (the rate of path i at time t Ä 1 is
used), (t = 2; . . . ; T ; i = 1; . . . ; I).

W0 : [Both] initial wealth.
WG : [Both] target terminal wealth.
ç : [Both] risk aversion coeécient.

(3) Decision variables
zj0 : [Both] investment unit for asset j and time 0, (j = 1; . . . ; n).
zsjt : [Scenario] investment unit for asset j, time t, and state s,

: [Hybrid] base investment unit 5 for asset j, time t, and node s, (j =
1; . . . ; n; t = 1; . . . ; T Ä 1; s 2 St).

v0 : [Both] cash at time 0
vst : [Scenario] cash of state s at time t, (t = 1; . . . ; T Ä 1; s 2 St).
v(i)
t : [Hybrid] cash of path i at time t, (t = 1; . . . ; T Ä 1; i = 1; . . . ; I).
qs : [Scenario] shortfall below target terminal wealth of scenario s, (s 2 ST ).
q(i) : [Hybrid] shortfall below target terminal wealth of path i, (i = 1; . . . ; I).

The decision variables for all assets (including cash) are state-dependent for the
scenario tree model. On the other hand, the decision variables for risky assets
are node-dependent while cash variables are path-dependent for the hybrid
model.

2.2.2 Objective function

The objective is the maximization of the function which is deåned using two
kinds of measures; the expected terminal wealth E [WT ] as return measure, and
the årst-order lower partial moment LPM1 of terminal wealth as risk measure
[Harlow(1991)].
Objective function = E [WT ]ÄçÅLPM1 (1)
The lower partial moment is one of downside risk measures, and expresses tail
risk of the relevant distribution of wealth below target.

E [WT ] and LPM1 for the both models are calculated as follows ;

[Scenario] : E [WT ] =
X
s2ST

psW s
T ; LPM1 =

X
s2ST

ps jW s
T ÄWGjÄ (2)

[Hybrid] : E [WT ] =
1
I

IX
i=1

W (i)
T ; LPM1 =

1
I

IX
i=1

åååW (i)
T ÄWG

ååå
Ä

(3)

where jajÄ = max(Äa; 0). W s
T is terminal wealth of scenario s in the scenario

tree model, and W (i)
T is terminal wealth of path i in the hybrid model.

5The base investment unit is deåned as the control variable of the investment unit. Details
are shown in Section 2.4.1.
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2.3 The scenario tree model
Investment units are mostly used as decision variables in the general literatures
to formulate the scenario tree model, and the typical formulation is follows 6 .

Maximize
X
s2ST

psW s
T Äç

0@X
s2ST

psqs
1A (4)

subject to
nX
j=1

öj0zj0 + v0 = W0 (5)

nX
j=1

ösj1z
s
j1 + vs1 =

nX
j=1

ösj1zj0 + (1 + r0) v0 ; (s 2 S1) (6)

nX
j=1

ösjtz
s
jt + vst =

nX
j=1

ösjtz
s0
j;tÄ1 +

ê
1 + rs

0
tÄ1

ë
vs
0
tÄ1; (t = 2; . . . ; T Ä 1; s 2 St) (7)

W s
T =

nX
j=1

ösjT z
s0
j;TÄ1 +

ê
1 + rs

0
TÄ1

ë
vs
0
TÄ1 ; (s 2 ST ) (8)

W s
T + qs ïWG ; (s 2 ST ) (9)

zj0 ï 0; (j = 1; . . . ; n) (10)
zsjt ï 0; (j = 1; . . . ; n; t = 1; . . . ; T Ä 1; s 2 St) (11)

v0 ï 0; vst ï 0; (t = 1; . . . ; T Ä 1; s 2 St) (12)
qs ï 0; (s 2 ST ) (13)

Constraint (5) is a budget constraint at time 0. Constraints (6) and (7) are
cash çow constraints at time t, and the values of both sides show wealth of
state s at time t. Constraint (8) shows terminal wealth. It is assured that the
second term of the objective function (except ç) represents the LPM1 together
with Constraint (9). Constraints (11) - (13) are non-negativity constraints.

We have an alternative formulation where investment proportions are used
as decision variables. However, the formulation contains non-linear constraints.
It can be transformed into the equivalent formulation where investment units
are used as decision variables. It leads to equivalent optimal solutions, while
the typical formulation with investment units does not contain non-linear con-
straints, and hence contains only linear constraints. This is the reason invest-
ment units are used.

6Other constraints such as boundary conditions, policy and legal constraints, and other
requirements can be easily added.
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2.4 The hybrid model
2.4.1 Investment strategies with investment unit functions

To help the reader to understand the åxed strategy used in the simulated path
approach, we explain how investments are determined on each simulated path
by using the 3-2 branching tree in Figure 1.

Table 1: A typical example of four kinds of strategies
strategy åxed-unit åxed-proportion buy-and-hold constant rebalance
t = 0 30 units 30% 30 units 30%

state(path) t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2
1 40 units 50 units 40% 50% 30 units 30 units 30% 30%
2 40 units 50 units 40% 50% 30 units 30 units 30% 30%
3 40 units 55 units 40% 55% 30 units 30 units 30% 30%
4 40 units 55 units 40% 55% 30 units 30 units 30% 30%
5 25 units 20 units 25% 20% 30 units 30 units 30% 30%
6 25 units 20 units 25% 20% 30 units 30 units 30% 30%
7 25 units 30 units 25% 30% 30 units 30 units 30% 30%
8 25 units 30 units 25% 30% 30 units 30 units 30% 30%
9 35 units 40 units 35% 40% 30 units 30 units 30% 30%

10 35 units 40 units 35% 40% 30 units 30 units 30% 30%
11 35 units 20 units 35% 20% 30 units 30 units 30% 30%
12 35 units 20 units 35% 20% 30 units 30 units 30% 30%

Table 1 shows a typical example of four kinds of strategies; åxed-unit strat-
egy, åxed-proportion strategy, buy-and-hold strategy, and constant rebalance
strategy. The values in the table show an example of investments for one of
risky assets.

The word `åxed' means that investments must have the same value for all
simulated paths passing any node (bundle). For example, we explain the åxed-
unit strategy. At time 1, 40 units are invested for path 1 to 4 through the årst
node, respectively. Similarly, 25 units are invested for path 5 to 8 through the
second node, and 35 units are invested for path 9 to 12 through the third node.
Investment unit for buy-and-hold strategy is åxed over the period. Speciåcally,
30 units are invested for all paths and all periods in this example. But we do
not call it the åxed strategy. The words `åxed strategy' is newly deåned in the
simulated path approach.

Only one value such as an investment proportion or unit is the same for
all paths through any node under the åxed strategy. For example, the åxed-
proportion strategy requires that investment proportions have the same value,
but they do not have the same unit for all paths passing any node. We formu-
late the model using the associated decision variables with the åxed strategy.
Moreover, we introduce \investment unit function", h(i)(zsjt), which shows in-
vestment unit on the path i, for the purpose of the general formulation to
the åxed strategy. To show that investment units are path-dependent while
decision variables used to describe the investment units are node-dependent,
the function is deåned as follows 7 .
h(i)(zsjt) = a(i)

jt z
s
jt (14)

7The superscript (i) attaches to the function to describe explicitly that investment units
have diãerent values for all paths.
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where a(i)
jt is an investment unit parameter that must be independent on the

rate of returns of path i after time t to keep non-anticipativity condition. The
investment unit function can show various investment strategies. We consider
two kinds of investment strategies.

(1) Fixed-unit strategy : h(i)(zsjt) = zsjt
Investment units have the same value for all paths passing any node for risky

assets. Cash has the diãerent value for any path.

(2) Fixed-proportion strategy : h(i)(zsjt) =
†
W (i)
t

ö(i)
jt

!
zsjt

Investment proportions have the same value for all paths passing any node
for any asset.

The function of the åxed-unit strategy is linear, while the function of the
åxed-proportion strategy is non-convex because W (i)

t is a function of decision
variables.

2.4.2 Formulation

We show a typical formulation, which structure is the same as that of the
scenario tree model 8;

Maximize
1
I

IX
i=1

W (i)
T Äç

†
1
I

IX
i=1

q(i)

!
(15)

subject to
nX
j=1

öj0zj0 + v0 = W0 (16)

nX
j=1

ö(i)
j1 zj0 + (1 + r0)v0 =

nX
j=1

ö(i)
j1h

(i)(zsj1) + v(i)
1 ; (s 2 S1; i 2 V s

1 ) (17)

nX
j=1

ö(i)
jt h

(i)(zs
0
j;tÄ1) +

ê
1 + r(i)

tÄ1

ë
v(i)
tÄ1 =

nX
j=1

ö(i)
jt h

(i)(zsjt) + v(i)
t ;

(t = 2; . . . ; T Ä 1; s 2 St; i 2 V s
t ) (18)

W (i)
T =

nX
j=1

ö(i)
jTh

(i)(zs
0
j;TÄ1) +

ê
1 + r(i)

TÄ1

ë
v(i)
TÄ1; (s0 2 STÄ1; i 2 V s0

TÄ1) (19)

W (i)
T + q(i) ïWG; (i = 1; . . . ; I) (20)

zj0 ï 0; (j = 1; . . . ; n) (21)

8Constraint (16) is a budget constraint at time 0. Constraints (17) and (18) are cash
çow constraints at time t, and the values of both sides show wealth of path i at time t.
Constraint (19) shows terminal wealth. It is assured that the second term of the objective
function (except ç represents the LPM1 together with Constraint (20). Constraints (22) -
(24) are non-negativity constraints.
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zsjt ï 0; (j = 1; . . . ; n; t = 1; . . . ; T Ä 1; s 2 St) (22)

v0 ï 0; v(i)
t ï 0; (t = 1; . . . ; T Ä 1; i = 1; . . . ; I) (23)

q(i) ï 0; (i = 1; . . . ; I) (24)
If we select the strategy which has a linear investment unit function such as
the åxed-unit strategy, we can formulate as a linear programming problem,
and solve a large-scale problem easily in practical use.

2.5 Iterative algorithm to solve the hybrid model with
the åxed-proportion strategy

In Section 4, we compare the hybrid model with the scenario tree model 9

. Because the hybrid model with the åxed-proportion strategy is a large-
scale problem with numerous, non-linear, and non-convex constraints, it is
diécult to solve the problem in practical use. More speciåcally, the solver
does not deliver any solution. We attempt to develop an algorithm to solve it
approximately 10 to compare the two models. The basic idea is as follows.

Suppose that we derive the optimal solutions of the hybrid model with the
åxed-proportion strategy, and calculate the wealth of path i at time t, W (i)É

t .

If we set up h(i)(zsjt) =
†
W (i)É
t

ö(i)
jt

!
zsjt as the investment unit function, and solve

the problem, the same solutions are supposed to be obtained. This would
only be true if the global solution could be computed. However, using this
characteristics we develop the iterative algorithm to solve it approximately.
The algorithm has three steps.
Step 1: We solve a problem with the åxed-unit strategy and calculate wealth

of path i at time t, W (i)É
t(0) . Let Obj0 denote the objective function

value, and set k = 1.

Step 2: We set up h(i)(zsjt) =
†
W (i)É
t(kÄ1)

ö(i)
jt

!
zsjt as the investment unit function

at the k-th iteration, and solve the problem. We calculate wealth of
path i at time t, W (i)É

t(k) , and the objective function value Objk.
Step 3: Stop if a value Objk ÄObjkÄ1 is lower than a tolerance. Otherwise,

set k † k + 1, and return to Step 2.
The algorithm does not guarantee to derive the global optimal solutions

for the åxed-proportion strategy. This algorithm is a heuristic one, and any
solution derived may be locally optimal. However, it is expected that the
solution derived is not so bad, but rather close to the global optimal solution

9Our numerical tests for the hybrid model show that the eécient frontier of the åxed-
proportion strategy dominates the eécient frontier of the åxed-unit strategy [see Hi-
biki(2003) for details].

10In this paper, we could not develop an algorithm to derive a global optimal solution.
This is our future research.
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because the eécient frontier derived by the algorithm dominates the eécient
frontier by the åxed-unit strategy according to our numerical examples in
Section 4. It is more useful in practical use that we have the ability to derive a
solution by solving linear programming problems successively rather than the
solver does not deliver any solution to a large-scale problem.

We evaluate the heuristic algorithm using two kinds of values; the objective
function value and the optimal investment proportions. At årst, we deåne the
following improvement rate IR(k) to evaluate the algorithm.

IR(k) =
Objk ÄObjkÄ1

Obj5 ÄObj0
; (k = 1; . . . ; 5)

where Objk is the objective function value of the k-th iteration, and Obj0 is the
objective function value of the åxed-unit strategy. The reason to use Obj5 is
that the procedure almost converges less than åve iterations according to our
experience. Table 2 shows the improvement rate of the objective function for 15
kinds of risk aversion coeécients. The problem which is solved to obtain these
results is an instance of the problems considered in Section 4. For example,
when ç= 0:6, 94.3% of Obj5 ÄObj0 goes up at the årst iteration, and 5.5 %
at the second iteration. Cumulative improvement rate by the second iteration,
CIR(2)(= IR(1) + IR(2)), is more than 99% for all ças shown in the bottom
line in Table 2.

Table 2: Improvement rate of the objective function
ç 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max Ave.

k = 1 99.2% 96.1% 95.1% 95.3% 95.1% 95.6% 95.1% 95.0% 94.3% 94.4% 94.4% 94.3% 100.0% 91.2% 85.9% 94.7%
k = 2 0.6% 3.8% 4.6% 4.6% 4.7% 4.2% 4.8% 4.9% 5.5% 5.4% 5.5% 5.6% 0.0% 8.3% 13.3% 5.1%
k = 3 0.2% 0.1% 0.2% 0.1% 0.2% 0.2% 0.1% 0.2% 0.1% 0.1% 0.1% 0.1% 0.0% 0.4% 0.8% 0.2%
k = 4 0.1% -0.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
k = 5 0.0% 0.0% 0.0% -0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

CIR(2) 99.8% 100.0% 99.7% 99.9% 99.8% 99.8% 99.8% 99.8% 99.8% 99.9% 99.9% 99.9% 100.0% 99.5% 99.2% 99.8%

Table 3: Average of standard deviation of investment ratios
ç = 1:5 # 0 # 1 # 2 # 3 ç = 1 # 0 # 1 # 2 # 3

t = 1 1.63% 0.12% 0.01% 0.02% t = 1 1.70% 0.13% 0.01% 0.00%
cash t = 2 1.44% 0.04% 0.01% 0.00% cash t = 2 1.81% 0.06% 0.01% 0.00%

t = 3 2.23% 0.14% 0.01% 0.00% t = 3 2.55% 0.17% 0.01% 0.00%
t = 1 2.03% 0.01% 0.00% 0.00% t = 1 0.57% 0.00% 0.02% |

stock t = 2 1.55% 0.04% 0.02% 0.00% stock t = 2 1.95% 0.05% 0.02% 0.01%
t = 3 1.94% 0.12% 0.02% 0.02% t = 3 2.40% 0.18% 0.02% 0.01%
t = 1 0.70% 0.04% 0.04% 0.02% t = 1 0.88% 0.02% 0.05% 0.01%

bond t = 2 0.92% 0.04% 0.01% 0.03% bond t = 2 1.08% 0.03% 0.02% 0.03%
t = 3 1.51% 0.08% 0.04% 0.03% t = 3 1.84% 0.09% 0.03% 0.03%
t = 1 0.97% 0.05% 0.00% 0.00% t = 1 0.98% 0.02% 0.00% 0.05%

CB t = 2 1.30% 0.03% 0.03% 0.01% CB t = 2 1.41% 0.05% 0.02% 0.02%
t = 3 1.79% 0.09% 0.03% 0.04% t = 3 1.83% 0.10% 0.02% 0.02%

Secondly, we examine investment proportions passing any node. Table 3
shows the average of standard deviation of investment ratios on the paths
through each node, õx;jt(k) for asset j, time t, and the k-th iteration. #k
shows the k-th iteration 11 . The results are shown for two kinds of çdue to

11The value of #0 shows the average of standard deviation in the case that the problem
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lack of space. The values are calculated as follows.

õx;jt(k) =
1
jStj

X
s2St

õsx;jt(k)

õsx;jt(k) =
1
jV s
t j

X
i2V st

ê
x(i)É
jt(k) Ä xsÉjt(k)

ë2
; where xsÉjt(k) =

1
jV s
t j

X
i2V st

x(i)É
jt(k)

x(i)É
jt(k) =

ö(i)
jt Åh(i)(zsÉjt )

W (i)É
t(k)

=
ö(i)
jt

ê
W (i)É

t(kÄ1)

.
ö(i)
jt

ë
zsÉjt

W (i)É
t(k)

=

0@W (i)É
t(kÄ1)

W (i)É
t(k)

1A zsÉjt ; (i 2 V s
t )

where x(i)É
jt(k) is an optimal investment proportion at the k-th iteration, and

õsx;jt(k) is standard deviation of x(i)É
jt(k) in the set V s

t . jStj is the number of nodes
at time t, and jV s

t j is the number of paths in the node.
If a value, õsx;jt(k), is equal to 0, investment proportions for asset j, time

t, and node s have the same value. The smaller the value, the more similar
investment proportions for all paths passing the node. Values of #1 become
much smaller than those of #0, because investment proportions are diãerent
for all paths passing any node in the åxed-unit strategy. All of values are lower
than 0.1% at the second iteration. Based on these results and because of saving
computation time, we derive the solution of the åxed-proportion strategy by
solving linear programming problems three times (k = 0; 1; 2) in this paper.

3 Scenario Generation

3.1 Generating simulated paths for the hybrid model
In general, scenarios associated with asset returns are generated according
to stochastic diãerential equations or time series models. Mulvey and Thor-
lacius(1998) use Towers Perrin's scenario generation system, \CAP: Link", to
solve a multi-period stochastic programming problem for pension funds. A
scenario system is based on a cascading set of stochastic diãerential equations.
The Russel-Yasuda model(See Cari~no et al., 1998a, 1998b and 1998c) used for
the ALM of casualty insurance company, generates scenarios whose returns are
calculated from a factor model that incorporates dependence between periods.

The two kinds of models need diãerent types of scenario structures. It is
diécult to compare the results derived from the diãerent scenario structures.
Therefore, it is necessary to consider how to generate scenarios from the same
possibility set and how to compare the results. In this paper, we choose the
`path to tree' procedure. First, we generate simulated paths, and secondly, we
construct the scenario tree from the simulated paths.

Next, we need to select a return generation model appropriately because the
characteristics of the model aãect the optimal solutions. However, the main
aim of this paper is to compare the two kinds of multi-period optimization

of the åxed-unit strategy is solved.
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models and to clarify the diãerence between them. Therefore, we use the
following simple procedure with the statistics associated with asset returns
(expected rate of return, standard deviation and correlation matrix of rate of
return) to generate scenarios of rates of returns of n risky assets and call rate
12 .

A rate of return ñ(i)
jt is generated as follows, where asset 0 (j = 0) is assigned

to call loan.
1ç The rate of return of asset j in period t is normally distributed with mean
ñjt and standard deviation õjt, and it is generated by:

ñ(i)
jt = ñjt + õjt"

(i)
jt ;

where "(i)
jt is a random sample from a multi-variate standardized normal

distribution.
2ç The random variable "jt (j = 0; . . . ; n; t = 1; . . . ; T ) follows that
"jt ò N (0;Ü) ;
where Ü is (n+ 1)T Ç (n+ 1)T correlation matrix.
ñ(i)

0t is a rate of change of a call rate. The call rate r(i)
t is calculated by:

r(i)
1 = r0 Ç

ê
1 +ñ(i)

01

ë
;

r(i)
t = r(i)

tÄ1 Ç
ê
1 +ñ(i)

0t

ë
; (t = 2; . . . ; T Ä 1):

We illustrate the summary statistics for numerical tests in Section 4 to help
the reader to understand. Random samples are generated from two kinds of
summary statistic. One is the summary statistics calculated by the available
market data; Nikko stock performance index (TSE 1), Nikko bond performance
index, Nikko CB performance index, and call rate.

The other is the virtual statistics considering serial correlations between two
diãerent periods. It is one of the important concerns in a multi-period model
to take a serial correlation of the asset price into consideration. Let c denote
a parameter associated with a serial correlation. Eleven cases of diãerent
parameters are tested to examine the eãect of serial correlation as in Table 4.
The parameter c is also the autocorrelation of each asset itself between period
t and period t+ 1 (t = 1; 2; 3).

Table 4: Eleven kinds of correlation parameters
Case cm5 cm4 cm3 cm2 cm1
Parameter c = Ä0:5 c = Ä0:4 c = Ä0:3 c = Ä0:2 c = Ä0:1
Case cp0 cp1 cp2 cp3 cp4 cp5
Parameter c = 0:0 c = 0:1 c = 0:2 c = 0:3 c = 0:4 c = 0:5

12Using the normal distribution simply for generating samples for returns may be unreal-
istic. We can generate samples using another models as shown in the previous literatures.
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3.2 Procedure of generating the extended decision tree
We need to classify and bundle simulated paths to make conditional decisions
in the hybrid model. Hibiki(2003) showed two kinds of classifying methods as
follows 13 .
(1) Sequential clustering method (SQC method)

The method is applied to the data set of simulated paths over the plan-
ning period by using the well-known hierarchical clustering method in each
period sequentially. Generated clusters represent the åxed-decision nodes.
The method implemented is based on similarities calculated by distances
between sampled return vectors.

(2) Portfolio based clustering method (PBC method)
The method is applied to a set of wealth of paths at time t which is cal-
culated by any portfolio over the planning period. While we can use a
portfolio, such as an equally weighted portfolio, an optimal portfolio de-
rived by solving the simulated path model, we need to ånd an appropriate
portfolio.

Because Hibiki(2003) showed the PBC method with an optimal portfolio for
the simulated path model (S-PBC method) is the best method among some
methods, the S-PBC method is used in this paper. This method is applied not
only to bundle simulated paths but also to make a scenario tree.

3.3 Generating a scenario tree from simulated paths to
compare the scenario tree model with the hybrid
model

We should not compare the eécient frontiers derived from the two kinds of
models, because they use diãerent scenario structures. The following steps are
proposed to generate a scenario tree based on the `path to tree' procedure as
mentioned before, and to compare the two kinds of models.
Step 1: Simulated paths are generated and bundled using the S-PBC method.

Using the iterative algorithm in Section 2.5, we solve the hybrid
model with the åxed-proportion strategy for several risk aversion co-
eécients. We calculate several expected terminal wealth and risk to
illustrate an eécient frontier. This step is the standard procedure
for the hybrid model.

Step 2: We generate a scenario tree from the simulated paths in Step 1, and
calculate prices on the scenario tree.

Step 3: We solve the scenario tree model for several risk aversion coeécients,
and derive optimal investment units. We calculate optimal invest-
ment ratios from optimal investment units.

Step 4: We apply the optimal investment ratios derived from the scenario
tree model to the hybrid model, and calculate several expected ter-

13See Pçug(2001) for another clustering methods for generating scenario tree.
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minal wealth and risk to illustrate the relationship between them.
Step 5: We compare the eécient frontier derived in Step 1 with the curve

calculated in Step 4.
We explain the procedures from Step 2 to Step 4 in detail.

Step 2: Procedure of generating a scenario tree from simulated paths
1ç Calculation of the average value

We compute ñsjt, the average rate of return at node s from period 1 to period
T Ä 1.

ñsjt =
1
jV s
t j

X
i2V st

ñ(i)
jt ; (j = 1; . . . ; n; t = 1; . . . ; T Ä 1; s 2 St)

where ñ(i)
jt is a rate of return for asset j, period t, and path i. A set of paths

V s
t generated in Step 1 is used.

2ç The matching of the årst two moments
ñsjt is adjusted so that the expected value and the standard deviation of ñsjt

calculated are equivalent to those of ñ(i)
jt .

ñsjt =
†
ñsjt Äñjt

îõjt

!
Çõjt +ñjt; (j = 1; . . . ; n; t = 1; . . . ; T Ä 1; s 2 St)

where ñjt is the expected rate of return of ñ(i)
jt , õjt is the standard deviation

of rate of return of ñ(i)
jt , and îõjt is the standard deviation of ñsjt. The mean

and standard deviation of the asset return in the scenario tree model match
those in the hybrid model for each asset and period 14 . However, correlations
between assets and serial correlations used in the scenario tree model do not
match those in the hybrid model. This is because of the technical diéculties.
3ç Calculation of the asset price

We compute ösjt, the asset price from the rate of return ñsjt.

ösj1 = öj0
ê
1 +ñsj1

ë
; (j = 1; . . . ; n; s 2 S1)

ösjt = ös
0
j;tÄ1

ê
1 +ñsjt

ë
; (j = 1; . . . ; n; t = 2; . . . ; T Ä 1; s 2 St)

ö(i)
jT = ös0j;TÄ1

ê
1 +ñ(i)

jT

ë
; (j = 1; . . . ; n; i 2 V s0

TÄ1; s0 2 STÄ1)

The number of scenarios is also I in the scenario tree model. The number of
paths through the node s0 at time T Ä 1 is jV s0

TÄ1j (s0 2 STÄ1), which depends
on the branching tree.
Step 3: Solving the scenario tree model, and calculating optimal investment
proportions

We can derive optimal investment units by solving the scenario tree model;
zÉj0, zsÉjt (optimal solutions of risky asset j) and vÉ0, vsÉt (optimal solutions of

14This is a method for matching the årst two moments. See Húyland, Kaut, and Wal-
lace(2003) for a heuristic scenario generation method for matching the årst four moments.
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cash). Optimal investment proportions are computed as follows.

wÉj0 ë
öj0zÉj0
W0

: Investment proportion of risky asset j at time 0.

cÉ0 ë vÉ0
W0

: Investment proportion of cash at time 0.

wsÉjt ë
ösjtz

sÉ
jt

W sÉ
t

: Investment proportion of risky asset j for time t and state s.

csÉt ë vsÉt
W sÉ
t

: Investment proportion of cash for time t and state s.

Step 4: Evaluation of optimal solutions of the scenario tree model on the
simulated paths

We substitute the optimal investment proportions derived from the scenario
tree model for the expressions of portfolio return (Equations (27) and (28))
on the simulated paths. The expected terminal wealth and risk (LPM1) are
calculated as in Equations (25) and (26) using terminal wealth on simulated
paths to illustrate the relationship between them.

Expected terminal wealth : W T ë
1
I

IX
i=1

W (i)É
T (25)

Risk : LPM1 ë
1
I

IX
i=1

max
ê
WG ÄW (i)É

T ; 0
ë

(26)

where
R(i)É

1 =
nX
j=1

ê
1 +ñ(i)

j1

ë
wÉj0 + (1 + r0) cÉ0; (i 2 V s

1 ; s 2 S1) (27)

R(i)É
t =

nX
j=1

ê
1 +ñ(i)

jt

ë
ws
0É
j;tÄ1 +

ê
1 + r(i)

tÄ1

ë
cs
0É
tÄ1;

(i 2 V s
t ; t = 2; . . . ; T ; s0 2 StÄ1) (28)

W (i)É
T =

† TY
t=1

R(i)É
t

!
W0; (i = 1; . . . ; I) (29)

4 Numerical tests : comparison of the models
We report some results of numerical tests 15 . We compare the two models
numerically; the hybrid model with the åxed-proportion strategy and the sce-
nario tree model. In addition, the hybrid model with the åxed-unit strategy
is also tested for the purpose of reference. Four assets (stock, bond, convert-
ible bond(CB), and cash) are considered over four periods. The number of
scenarios (simulated paths) is 10,000. The number of constraints except non-
negativity constraints is about 50,000, and the number of decision variables is

15All of the problems are solved using NUOPT(Ver. 5.1.0a) | mathematical programming
software package developed by Mathematical System, Inc. | on Windows 2000 personal
computer which has 1.8 GHz CPU and 768MB memory.
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also about 50,000. The size of a branching tree depends on the case.
Initial prices of stock, bond, and CB are assumed to be 1 without loss of

generality. The initial call rate is 0.44%. The initial wealth is 100 million
Japanese yen, and the target terminal wealth is also 100 million Japanese yen.

We have performed four kinds of numerical tests.
Case A1: Basic results for the 5-4-3 branching tree using statistics of histor-

ical data .
Case B1: Basic results for the 5-4-3 branching tree using virtual statistics

considering various serial correlations .
Case A2: Comparison of the results for various numbers of N-N-N branching

trees (N= 2; 3; . . . ; 13) using statistics of historical data .
Case A3: Comparison of the results for various structures of branching trees

under the same number of nodes at time 3 using statistics of his-
torical data.

We examine some basic characteristics about the diãerence between the sce-
nario tree model and the hybrid model in the Case A1. The number of states
in the scenario tree model or the number of paths in the hybrid model which
comes out of each state or node at time T Ä1 is 166 or 167 (= 10;000

5Ç4Ç3 = 166:7).
We test how the serial correlations aãect the diãerence between the two kinds
of models in the Case B1. The larger the size of the branching tree, the larger
the number of states from time 1 to time 3 in the scenario tree model. On
the other hand, the number of states or paths remains the same in the hybrid
model even if the size of the branching tree becomes larger. How does the size
of the branching tree aãect the optimal solution for the two kinds of models?
We examine this question in the Case A2. It is also important to compare the
two models under various structures of branching trees. In the Case A3, we
examine the diãerence of these models under the condition that the number
of decision nodes(states) remains the same at time 3 16.

The meaning of legend symbols in the graphs such as in Figure 2 is shown in
Table 5. The same short titles are used in the sentences to avoid redundancy
and to keep clarity.

Table 5: Legend symbols in the ågures
Scenario Eécient frontier when the scenario tree model is solved.
Scenario(H) Relationship between the expected terminal wealth and risk

when the optimal solutions of scenario tree model are evaluated on simulated paths.
Hybrid(R) Eécient frontier when the hybrid model with the åxed-proportion strategy is solved.
Hybrid(U) Eécient frontier when the hybrid model with the åxed-unit strategy is solved.

16The number of states or paths which comes out of each state or node at time 3 is N3

in the Case A2, but they have the same number in the Case A3.
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4.1 Case A1: Basic results for the 5-4-3 branching tree
using statistics of historical data

10,200
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Risk (LPM_1)

Expected Wealth
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Scenario(H)
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Figure 2: Case A1: Eécient frontier
Figure 2 shows the four kinds of curves for the 5-4-3 branching tree using
statistics of historical data. When we evaluate optimal solutions of the sce-
nario tree model on the simulated paths, the eécient frontier of `Scenario'
moves downwards to `Scenario(H)'. The problem solved by the scenario tree
model is over-evaluated because of the insuécient description of uncertainties
associated with asset returns. The eécient frontier of `Hybrid(R)' is better
than the curve of `Scenario(H)', which cannot have low risk. The hybrid model
can evaluate and control risk better than the scenario tree model.

The eécient frontier of `Hybrid(R)' dominates the eécient frontier of `Hy-
brid(U)'. This is because we need to hold cash after time 1 to execute trans-
actions for the åxed-unit strategy in the simulated path approach, while we
do not always have to hold cash for the åxed-proportion strategy. When ç
is large, the two strategies have almost the same expected wealth and LPM1,
because cash is held to reduce risk. When ç is small, the eécient frontier of
`Hybrid(U)' is worse than the curve of `Scenario(H)' due to the same reason.

We can verify our explanation by illustrating the average investment ratios
at each time in Figure 3. The horizontal axis is a risk aversion coeécient
(ç), and the vertical axis is an average investment ratio. The smaller the
risk aversion coeécient (ç), the more cash the åxed-unit strategy holds than
the åxed-proportion strategy. Dynamic portfolios of the two strategies of the
hybrid model are similar each other except cash.

Optimal solutions of the scenario tree model have very extreme solutions
at time 0, and diãerent from those of the hybrid model. This is because the
scenario tree model has much less number of states in period 1 than those of
the hybrid model.

17



Unit model : time 0

0%

20%

40%

60%

80%

100%

min 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max

gamma

Ratio

Stock

CB

Bond

Cash

Unit model : time 1

0%

20%

40%

60%

80%

100%

min 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max

gamma

Ratio

Stock

CB

Bond

Cash

Unit model: time 2

0%

20%

40%

60%

80%

100%

min 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max

gamma

Ratio

Stock

CB

Bond

Cash

Unit model: time 3

0%

20%

40%

60%

80%

100%

min 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max

gamma

Ratio

Stock

CB

Bond

Cash

Ratio model: time 0

0%

20%

40%

60%

80%

100%

min 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max
gamma

Ratio

Stock

CB

Bond

Cash

Ratio model: time 1

0%

20%

40%

60%

80%

100%

min 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max
gamma

Ratio

Stock

CB

Bond

Cash

Ratio model; time 2

0%

20%

40%

60%

80%

100%

min 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max
gamma

Ratio

Stock

CB

Bond

Cash

Ratio model: time 3

0%

20%

40%

60%

80%

100%

min 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max

gamma

Ratio

Stock

CB

Bond

Cash

Scenario: time 0

0%

20%

40%

60%

80%

100%

min 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max
gamma

Ratio

Stock

CB

Bond

Cash

Scenario: time 1

0%

20%

40%

60%

80%

100%

min 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max
gamma

Ratio

Stock

CB

Bond

Cash

Scenario: time 2

0%

20%

40%

60%

80%

100%

min 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max

gamma

Ratio

Stock

CB

Bond

Cash

Scenario: time 3

0%

20%

40%

60%

80%

100%

min 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max

gamma

Ratio

Stock

CB

Bond

Cash

Hybrid model 
with the fixed-unit strategy

Hybrid model 
with the fixed-proportion strategy

Scenario tree model

Time 1

Time 0Time 0Time 0

Time 1

Time 2

Time 1

Time 2Time 2

Time 3 Time 3Time 3

(smaller risk) [ large †Ä çÄ! small ] (larger risk)

Figure 3: Case A1: Average investment ratios

4.2 Case B1: Basic results for the 5-4-3 branching tree
using virtual statistics considering the serial cor-
relation
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We show eleven graphs for the 5-4-3 branching tree using virtual statistics
considering the various serial correlations in Figure 4. The larger the parameter
c, the closer the eécient frontier of `Hybrid(R)' to the curve of `Scenario(H)',
while the solutions of `Scenario(H)' cannot also have low risk in this case.
The smaller the absolute value of the parameter c is, the closer the eécient
frontier of `Scenario' is to both the eécient frontier of `Hybrid(R)' and the
curve of `Scenario(H)'. On the other hand, the larger the absolute value of the
parameter c is, the more over-evaluated the eécient frontier of `Scenario' is.
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Figure 4: Case B1: Eécient frontiers
Figure 5 shows investment proportions at time 0 for 16 kinds of risk aversion

coeécients (ç). The horizontal axis is a risk aversion coeécient(ç). The
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optimal solutions of the hybrid model are diãerent from those of the scenario
tree model for all serial correlation parameter as well as the result of the Case
A1. The optimal solutions of the two strategies of the hybrid model are similar
as well.
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Figure 5: Case B1: Investment proportions at time 0

4.3 Case A2: Comparison of the N-N-N branching
trees using statistics of historical data

Figures 6 has twelve graphs for various N-N-N branching trees using statistics
of historical data, and each graph shows the four kinds of the curves. The
eécient frontier of `Scenario' is also over-evaluated as well as the results of
Case A1. Even if the size of branching trees becomes larger, the degree of
diãerence between the two models is similar to that of the 5-4-3 branching
tree. But the larger the size of the branching tree, not only the better the curve
of `Scenario(H)' but also the smaller the minimum risk of `Scenario(H)'. This
reason is that the scenario tree model that is solved with a larger branching tree
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can describe more accuracy of uncertainties, and control risk. However, the
curve of `Scenario(H)' is still dominated by the eécient frontier of `Hybrid(R)'.
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Figure 6: Case A2: Eécient frontiers
Figure 7 shows investment ratios at time 0 of the two models. The hori-

zontal axis is a risk aversion coeécient (ç), and the vertical axis is an average
investment ratio. Twelve broken lines in each graph of Figure 7 show changes
of investment proportions with risk aversion coeécients to a `N-N-N' branch-
ing trees. Optimal solutions of the scenario tree model are diãerent from those
of the hybrid model like the Case A1, or the case of the 5-4-3 branching tree.
Optimal solutions of the scenario tree model are more sensitive to the change
of the size of branching tree than those of the hybrid model. The larger the
size of the branching tree, the riskier assets we tend to invest in at time 0 for
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the both models. This is because we have the ability and çexibility to control
risk under a large branching tree, even if riskier assets are invested in at time
0.

Scenario tree model

Hybrid model with the fixed-proportion strategy

(smaller risk) [ large †Ä çÄ! small ] (larger risk)
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Figure 7: Case A2: Investment proportions at time 0

4.4 Case A3 : Comparison of the branching trees un-
der the same number of nodes at time 3 using
statistics of historical data

We examine how the eécient frontiers of the two kinds of models diãer by the
branching tree structures. We solve the problems for four kinds of structures
which number of nodes is 2000; 20-10-10, 20-20-5, 40-10-5, and 80-5-5 branch-
ing trees. We consider three groups that contain some pairs of branching tree.
The group is deåned by the characteristics of tree structures. We compare the
following pairs of branching trees.
(1) The årst group of pairs (Group 1), which pairs have the diãerent number

of nodes at both time 1 and time 2. Pairs of branching trees are 20-10-10
& 40-10-5, and 20-10-10 & 80-5-5.

(2) The second group of pairs (Group 2), which pairs have the same number
of nodes at time 1, but the diãerent number of nodes at time 2. A pair of
branching trees is 20-10-10 & 20-20-5.

(3) The third group of pairs (Group 3), which pairs have the diãerent number
of nodes at time 1, but the same number of nodes at time 2. Pairs of
branching trees are 20-20-5 & 40-10-5, 20-20-5 & 80-5-5, and 40-10-5 &
80-5-5.

Figure 8 shows the curves and the investment ratios at time 0 for four kinds of
branching trees. The horizontal axis of the top four graphs is the LPM1 value,
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and the vertical axis is the expected terminal wealth. The horizontal axis of
other eight graphs in the middle and bottom of the ågures is the risk aversion
coeécient (ç), and the vertical axis is the investment ratio at time 0. The
larger the number of nodes is, the more upwards the eécient frontier moves.
However, we almost have the similar relationship between the two models as
in the previous cases.
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Figure 8: Case A3: The graphs that the branching trees have 2,000 nodes at
time 3

The pairs of eécient frontiers in Group 1 and Group 2 are diãerent from
each other. The pairs of eécient frontiers in Group 3 are more similar than
those of the other groups, because there are a lot of paths through any node
at the time 1.

5 Concluding Remarks
The scenario tree model has been typically used for the dynamic portfolio op-
timization. However, We have some diéculties of how set of scenarios covers
the set of possibilities to a suécient degree to describe the uncertainties. The
hybrid optimization model using simulated paths and tree structures allows
both describing of the uncertainties with high accuracy and making of con-
ditional decisions. The previous papers (Hibiki, 2001b and 2003) show some
characteristices of the hybrid model, but do not examine how the hybrid model
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is better than the scenario tree model. In this paper, we compare the two types
of multi-period stochastic optimization models by using numerical tests, and
illustrate the diãerence between them. Our contributions and related future
research of this paper are as follows.

(1) We develop the speciåc algorithm to solve the hybrid model with the
åxed-proportion strategy. We can derive an approximate solution to a non-
convex dynamic asset allocation problem by solving linear programming
problems successively. This algorithm seems to work well, however it is a
heuristic one. It is an important task to develop an alternative algorithm
because it does not guarantee to derive a global optimal solution.

(2) We develop the method of comparing the two kinds of models with diãer-
ent scenario structures. In this method, the mean and standard deviation
of asset returns of simulated paths match those of the scenario tree model
in each period, but correlations between assets and serial correlations do
not match each other in the scenario tree model because of the technical
diéculties. We need to develop a correlation matching method to con-
struct a scenario tree from simulated paths. Moreover, it is an interesting
research to develop the `tree to path' procedure, and to compare it with
the `path to tree' procedure we choose in this paper. If an appropriate
scenario tree is constructed, it is easy to generate simulated paths from
the scenario tree. It may be diécult to construct the appropriate scenario
tree.

(3) We test some numerical examples to compare the two kinds of models. We
show that the hybrid model can evaluate and control risk better than the
scenario tree model. The scenario generation model with the two kinds of
summary statistics is tested. We should compare the hybrid model with
the scenario tree model under the various scenario generation models.
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