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Abstract There are many studies of optimal asset allocation with transaction costs in academic litera-
tures. However, those are numerically solved for two-asset and three-asset cases. In contrast, the investment
in five asset classes (domestic bond and stock, international bond and stock, and cash) is at least required for
practical pension fund management. Therefore, there are some real limitations to the continuous-time ap-
proach used in the previous literatures, which are the methods of solving the HJB equation for the stochastic
control problem. In general, most investors use the rebalance rule with the no-trade ranges in practice which
are constant and symmetric to the policy asset mix because it is easy to use the rule. In this paper, we pro-
pose the optimization model for the multiple asset allocation problem with transaction costs to determine
the symmetric no-trade ranges of the policy asset mix using the derivative free optimization(DFO) approach
proposed by Hibiki et al.(2014). Specifically, we solve the five-asset problem with boundary constraints for
cash for the Government Pension Investment Fund(GPIF) in Japan in a discrete-time and finite-period
setting. We clarify the fact that we need to adjust the amounts of risky assets even within the no-trade
range if the boundary constraints for cash are required, and we describe the simulation procedure in the
discrete-time model. We examine the difference for various time intervals and horizons, and conduct the
sensitivity analysis for the various proportional transaction cost rates, the tracking error aversions, and the
bounds for cash constraints. In addition, we compare the optimal time-dependent no-trade ranges with the
constant no-trade ranges. The numerical results show the possibilities of applying the DFO model to the
practical problem determining the symmetric no-trade ranges.
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1. Introduction

The Government Pension Investment Fund(GPIF) in Japan needs to manage its fund based
on the target allocation of policy asset mix, which is computed using mean values of the
rates of returns of each asset, standard deviations of each asset and correlations among
assets. Almost corporate pension funds also manage their funds in the same way, though
their policy asset mixes are different from each other depending on the degree of maturing,
guaranteed interest rate, and so on.

The actual weights of assets diverge from the target weights in the portfolio as the asset
prices change randomly. Meanwhile, the transaction costs need to be paid to maintain
the target weights by rebalancing assets. Therefore the investors do not rebalance their
assets without exceeding the boundary of the no-trade region because it exists the trade-off
between the costs associated with tracking error(deviations from the target allocation) and
the transaction costs. As an example, the target allocation of policy asset mix and the
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permissible ranges of deviation from the target of the GPIF are shown in Table 1! .

Table 1: Policy asset mix of the GPIF

Domestic | Domestic | International | International | Short-term
bonds stocks bonds stocks assets
Target allocation 67% 11% 8% 9% 5%
Permissible range +8% +6% +5% +5% —

The asset weights of the target portfolio in almost all pension funds are usually calculated
by using the mean-variance model as well as the GPIF. However, it is unknown for the
pension funds how to decide the no-trade ranges of their portfolios. The GPIF does not
provide how to determine the permissible ranges and the theoretical rationale.

There are many academic studies for determining the boundaries of no-trade region
and the optimal asset rebalancing strategy with transaction costs. Leland(1999) formulates
the stochastic control problem in a continuous-time setting, and derives the optimal re-
balancing strategy for an investor who minimizes both proportional transaction costs and
tracking error with respect to a specified target asset mix for the three-asset case. Donohue
and Yip(2003) conduct the sensitivity analysis of the modeling parameters associated with
Leland(1999), and compare the different rebalancing strategies. Pliska and Suzuki(2004)
improve the Leland model(1999), and derive the optimal trading strategy for an investor
who minimizes both the fixed and proportional transaction costs and the tracking errors.
Impulse control theory is used in a continuous-time and dynamic setting to deal with the
problem in a general and analytical way, and the explicit solution for the two-asset case is
derived.

Moreover, there are some continuous-time and discrete-time models in finite cases with
the maximization of the expected CRRA utility of wealth. In a continuous-time approach,
Liu and Loewenstein(2002) examine the optimal trading strategy for a CRRA investor who
trades two assets(bond and stock), and maximizes the expected utility of wealth on a finite
date with transaction costs. The closed-form solutions are obtained at an uncertain time
by solving the Hamilton-Bellman-Jacobi(HJB) equation. Liu(2004) derives the optimal
intertemporal consumption and investment policy of a CARA investor who faces the fixed
and proportional transaction costs by solving the HJB equation. The sensitivity of the
boundaries to the changes in risk aversion and volatility are shown as some further analysis of
the optimal trading strategy. Lynch and Tan(2010) numerically solve the decision problem
of a multi-period CRRA investor who faces fixed and proportional transaction costs and
has access to two risky assets, both with predictable returns. Atkinson and Ingpochai(2010)
examine the intertemporal optimal portfolio selection and the consumption rule of a CRRA
investor who faces the proportional transaction costs when trading between a risk-free asset
and multiple risky assets. Numerical examples for a portfolio with a risk-free asset and
two risky assets are provided for constant variance as well as stochastic variance. Using
a discrete-time approach, Gennotte and Jung(1994) solve the problem with a risky asset

!The GPIF changed the midterm plan on June 7th, 2013. The standard deviations and the correla-
tion coefficients of the rates of returns of assets are recalculated and replaced while the expected rates of
returns of assets are unchanged. As the results, the policy asset mix is modified as follows — 60% for
domestic bond, 12% for domestic stock, 11% for international bond, 12% for international stock, and 5%
for cash(unchanged). The permissible ranges are not changed. We use the values of Table 1 because our
study is done before the change of the policy asset mix.
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and a riskless asset. They derive the optimal trading strategies described in terms of no
transaction region using the binomial model. Boyle and Lin(1997) extend the work by
Gennotte and Jung(1994), and derive an explicit closed-form solution for an investor who
has a power utility function.

Some different types of the problems are formulated for multiple-asset cases, but only
two-asset or three-asset problems are solved numerically. However, almost all investors of
pension funds and investment trusts invest in more than five assets, such as domestic bond
and stock, international bond and stock, and short-term asset(cash). There are some real
limitations to solve the problem for the five-asset case in a continuous-time model by the
HJB equation. In a real world, it is difficult to employ the utility functions assumed in the
previous studies of finite horizon models. In addition, most institutional investors determine
and manage the policy asset mix. We need to formulate a discrete-time model because we
cannot trade assets continuously. In this paper, we formulate the finite and discrete-time
model in the Leland approach which involves the transaction costs and the tracking errors
in the objective function as well as Hibiki et al.(2014). We solve the problem with derivative
free optimization(DFO), which is one of the mathematical programming approach. We can
describe the simulation procedure flexibly in the DFO approach.

Hibiki et al.(2014) derive the no-trade region with the DFO approach for the Leland
model(1999) in a discrete time and finite horizon setting, and show the usefulness of this
approach. The optimal no-trade boundaries in a finite case are time-dependent. On the
other hand, most investors use the rebalance rule with the no-trade ranges in practice which
are constant and symmetric to the policy asset mix because it is easy to use the rule. In this
paper, we propose the approach to derive the constant and symmetric no-trade ranges of
the target portfolio of multiple assets numerically as with the no-trade ranges of the GPIF.
In addition, we propose the model with the time-dependent no-trade ranges, and thus we
compare them with the constant ranges.

We have two original contributions in this paper as follows.

(1) Deriving the symmetric no-trade ranges for the multiple-asset problem, specifically with
the GPIF parameters
There are no models to derive the symmetric no-trade ranges with respect to the policy
asset mix for multiple-asset case used in practice because the practical use is not considered
in the previous literatures. In this paper, we solve the five-asset problem with the GPIF
parameters, and derive the optimal solutions. Our contribution is to compute the practical
solutions(symmetric no-trade ranges or rectangles) for four risky asset-case rather than
the theoretical solutions(parallelogram-like no-trade regions) for two risky asset-case 2 .

(2) Adjustment algorithm for the rebalancing strategy
We clarify the fact that we need to adjust the amounts of risky assets even within the
no-trade ranges when the boundary constraints for cash are required. We describe the
simulation procedure involving the adjustment algorithm in the discrete-time model.

This paper is organized as follows. In Section 2, we clarify the fact that we need to adjust
the amounts of risky assets even within the no-trade ranges, and we describe the simulation

2Many previous studies show that the optimal no-trade region is non-symmetric with respect to the
policy asset mix or parallelogram-like policy(See Leland(1999), Liu(2004), Lynch and Tan(2010), Hibiki
et al.(2014)). We can compute the no-trade region and implement the rebalance strategy for two risky
asset-case. But four risky assets are usually invested for pension fund management, and therefore we use
the symmetric no-trade ranges from a practical perspective. However, it is important to compare the results
between the symmetric no-trade range(rectangular policy) and general no-trade region(parallelogram-like
policy). We show the comparison for two risky asset-case in Appendix A.
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procedure in the discrete-time model. We solve the optimization problem to decide the no-
trade(permissible) ranges with respect to the policy asset mix using the parameters applied
for the GPIF, and examine them in Section 3. In Section 4, we derive the optimal time-
dependent no-trade ranges, and compare them with the constant ranges. Section 5 provides
our concluding remarks.

2. Determination of the no-trade ranges and DFO modeling

In this paper, we solve the problem to decide the no-trade ranges with the DFO method as
well as Hibiki et al.(2014). The problem with the proportional transaction costs are solved
minimizing the sum of the transaction costs and the tracking errors associated with the
target allocation as well as Leland(1999) ® . In this paper, the rebalance targets are set
to the no-trade boundaries of ranges when assets exceed them because the problems with
the proportional transaction costs are solved under the same setting in the previous papers
including Leland(1999) * . The DFO method is the non-linear optimization method where
the problems are solved without the derivative of the objective function®. The optimal
solution can be obtained precisely for the problem where the minimized objective function
is convex, and the number of decision variables is several. The number of decision variables
is 2V"1(N — 1) in the N-asset case(including a riskless asset) of the Leland model(1999),
and increases exponentially with N. However, the no-trade ranges of the GPIF in Table
1 are symmetric to the target allocation, and therefore the number of decision variables is
N — 1 which is the same as the number of risky assets. The type of the problem goes well
with the DFO method.

We describe the simulation procedure of calculating the objective function value to derive
the optimal solution by the DFO method. We discretize the stochastic process for the risky
assets used in Leland(1999), and generate the normal random number for €; by using the
Monte Carlo method.

AS;

i

= ,U/Z‘At—i-O'iVAt&fi, Eq N(O,l), (21)
correl(e;, €5) = pij, (2.2)

where S; is the price of asset ¢, u; is the expected rate of return of asset i, o; is the standard
deviation of asset 4, and p;; is the correlation coefficient between asset ¢ and j. We calculate
the weights of risky assets from the prices, and rebalance the assets based on the rule. We
formulate the model to derive the no-trade ranges with respect to the given policy asset mix
by minimizing the sum of the transaction costs and the tracking errors. We do not involve
the no-trade range of asset IV, because we impose the boundary constraints for cash where
the lower bound of the asset N is Ly, and the upper bound is UxS.

3We show the rationale for using the trade-off between tracking error and transaction cost in the no-trade
range problem in accordance with Leland(1999) in Appendix B.

4The no-trade boundary is the optimal rebalance target in the infinite and continuous-time model with
“proportional” transaction costs as in Leland(1999), but we cannot guarantee it in the finite and discrete-
time model. However, Hibiki et al.(2014) showed that the boundary value of the no-trade range is still
appropriate as the rebalance target for two-asset case with a risky asset and a riskless asset, and therefore
we define the problem based on the rebalance strategy from a practical perspective.

°The readers can refer Conn, Scheinberg and Vicente(2009) and the chapter nine of Nocedal and
Wright(2006) in detail. In this paper, we use NUOPT/DFO(2011) added on the mathematical programming
software package called NUOPT developed by NTT DATA Mathematical Systems, Inc. NUOPT/DFO im-
plements the trust-region methods based on derivative free models, which maintain quadratic models based
only on the objective function values computed at sample points.

In the case of the GPIF as in Table 1, the asset IV is short-term asset or cash. We need to have cash
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2.1.

When we rebalance a risky asset out of the no-trade range to the boundary, there are some
cases that we need to adjust the amount of other risky assets even within the no-trade
ranges’. An example is shown in Table 2. Suppose we have a target portfolio at time 0,
and set up Ly = 3%. Assume that the time passed and asset prices changed. At time ¢, we
assume that the weight of the domestic bond becomes 53%, and the weight of the domestic
stock becomes 19%. Because both assets are beyond the no-trade ranges, the weight of
the domestic bond is moved from 53% to 59% which is the lower no-trade boundary, and
the weight of the domestic stock is moved from 19% to 17% which is the upper no-trade
boundary. In contrast, we do not need to rebalance the international bond and stock if we
follow the rebalance rule because both assets are within the no-trade ranges. As the result,
the calculated weight of cash is —3%, but we need to have 3% cash. Therefore, we have to
decrease 6% of the risky assets at least to increase 6% cash. This occurs because the asset
weight substantially below the lower no-trade boundary needs to be increased. If we do not
prevent this situation by decreasing other assets which are over the target weights, the total
weight of the assets except asset N becomes beyond 1 — Ly. In the case of Table 2, all of
risky assets can be within the no-trade ranges by decreasing 2% of the assets even within
the no-trade ranges respectively. This is implemented by the reallocation from ”Rebalance
(1)” to "Rebalance (2)”. We involve the adjustment algorithm with the above-mentioned
steps to decide the no-trade ranges as follows®.

Imposing the boundary constraints for cash

Table 2: Example of adjustment steps within the no-trade ranges

Asset class Domestic | Domestic | International | International | Short-term
bond stock bond stock asset
Range 59 ~75% | 5~ 1T% 3~ 13% 4 ~ 14% —
time 0 67% 11% 8% 9% 5%
time ¢ 53% 19% 13% 14% 1%
Rebalance (1) 59% 17% 13% 14% —3%
Rebalance (2) 59% 15% 11% 12% 3%

(1) We calculate the excess weight EW which needs to be adjusted.

(2) We examine the set I of assets above the target weights of policy asset mix, and calculate
E X; which denotes the difference between the investment weight of asset ¢ and the target
weight. One asset is at least above the target weight.

(3) We solve the problem to minimize the sum of transaction costs and tracking errors at
each time and on each path in order to obtain the optimal decreasing weight of asset ¢

in a degree in order to pay for pension money, while we need to invest in risky assets without having much
cash because of the efficient investment. When we do not impose the boundary constraints, we have Ly = 0
and UN =1.

"We do not need to adjust the risky assets within the no-trade ranges in the continuous-time model
because even the asset out of the no-trade range is rebalanced on the boundary immediately. However, we
need to adjust the risky assets within the no-trade ranges even in the continuous-time model if the lower
bound of asset N is greater than zero, that is Ly > 0.

81f the no-trade ranges are small, we do not need to adjust the amounts of assets, however we need to pay
much transaction costs. Therefore, the optimal no-trade ranges are derived in consideration of the trade-off.
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or Aw;.
> Aw; = EW, 0 < Aw; < EX;
el
When the cash is beyond the upper limit, the amounts of risky assets are adjusted based
on the similar ways. We omit the algorithm because of the similar steps.

2.2. Simulation procedure

Let ¢; (i = 1,..., N — 1) denote the no-trade range of asset i. We describe the simulation
procedure and solve the optimization problem by the DFO method in what follows °. The
superscript of ‘b‘ shows the notation of pre-rebalance, and the superscript of ‘a‘ shows the
notation of post-rebalance. We let p; the target weight of asset ¢ of the policy asset mix.

(1) Suppose that the amount of wealth at time 0 is 1 or Wo(m) = 1, and the value of asset i
is p;, or Sfo(m) = p; 1.

(2) We calculate sequentially the value of asset z'(Sft(m)), the Weight(wft(m)) and the amount

of Wealth(Wt(m)) on path m at time t (¢t = 1,...,7; m = 1,...,M; i = 1,...,N),
where M is the number of random samples, and 7' is the number of periods. We
generate random samples 52” ) used in Equation (2.3) by the Monte Carlo method.

Sy ™) is computed in Equation (2.19) to be described later.

S = (14 mAt+ on/Atel) s (2.3)
N
m b(m
Wt( = ZSit( : (2.4)
i=1
. Sf’(m)
wi = s (2.5)
Wy

We compute the weight of asset i after rebalancing (w?t(m)) as in Equations (2.6) and
(2.7) based on the value of wft(m),

pi —¢q; for w?t(m) € [0,p; — @),

a(m)

Wiy = wft(m) for wzt(m) €pi—aq,pi+aql, (i€In) (2.6)
pi +q; for wit(m) € (pi + i, 1],

w?\,(zn) = 1- Z w?t(m), (2.7)
i€l _1

where Iy_1 = {1,2,..., N — 1} denotes the set of assets except asset N. As discussed

in Section 2.1, if the weight of asset N (w%;n )) is beyond the upper or lower limit when
rebalancing the assets except asset N on the boundary of the no-trade range, we need
to adjust the weights of the assets except asset NV in what follows.

(D The case that the weight of asset N is below the lower limit, or w}l\,(:n )< Ly
We calculate the excess weight, or EW,™ = Ly — wi™
as follows.

), and adjust the asset weights

90ur procedure may be complicated. The reason is we impose the constraints(or upper and lower limits)
for cash. However, according to the numerical analysis(the left graph of Figure 6) in Section 3.1, the
probabilities of which cash is adjusted due to the constraints are at most about 6% for At = 0.1 year and

about 14% for At = 1.
10T he investment value is not dependent on path m at time 0, but we describe the notation for convenience.
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a. Let I,"™ denote the set of assets which meets the condition that w?™

In_1).

b. We solve the following subproblem of minimizing the objective function to obtain
the values of Awgn ) which are the amounts of the decreases in the asset weights in
the set I, ™11,

>pz(z €

Minimize ~ C(Aw™) — C(0), (2.8)

subject to 0 < Awl™ < EXU™ (i e L™,
S Aw = Bw™, (2.10)

ier, (™

Awl™ =0 (i € Iy, — 1), (2.11)
Aw = —EW ™, (2.12)
where Aw!™ = (Aw'™ .. AwY), EXU™ is the investment weight minus the
target weight, or EXi(tm ) = wz(m) — p;, and O is the N-dimensional zero vector.

According to the after-mentioned Equation (2.20), C(x) is the objective function on
path m at time t. We can write it as follows,

N
Ca@) =2 (E X0 x) (Ex;tm) _ mj) o+ Y ki, (2.13)
i=1 j=1 1€ln_1

where A is a tracking error aversion, and k; is a proportional transaction cost rate of
asset 1.

c. Let Awgn * denote the optimal solution of the subproblem, and we replace w?t(m) —

Aw(™* with wi™ adjusted to avoid using the another notations.

a(m
t

@ The case that the weight of asset N is over the upper limit, or wjy 'S U N
We calculate the deficit weight or DWt(m) = w?v(zn ) — Uy, and adjust the asset weights

as follows.
a. Let I, ™ denote the set of assets which meets the condition that w™™ < p; (i €
In_1).

b. We solve the following subproblem of minimizing the objective function to obtain
the values of Awgtm ) which are the amounts of the increases in the asset weights in

the set 1, ™.

Minimize  C(Aw!™) — C(0), (2.14)
subject to 0 < Aw™ < DE (i e 17 ™), (2.15)
S Awy” = pw™, (2.16)
ier; (™
Aw™ =0 (i eIy, —I;™), (2.17)
Aw = —pw™, (2.18)
where DE(™ is the target weight minus the investment weight or DE™ = p; —w(™

As in Equation (2.11), the decreases in the asset weights except the assets in the set I, (™) and asset
N are equal to zero.



c. We replace w™ + Aw(™* with w™ adjusted.
@ The value of asset i after rebalancing (Sf;(m)) is calculated in Equation (2.19)'2
S — MW (i =1, N). (2.19)

(3) The model is formulated as follows,

M T N N
S _ 1 (rAt)t a(m) a(m)
Mlngnlze C= Vi Z Z e A Z Z (wit - pi> (wjt - p]> Oij

m=1 t=1 i=1 j=1
N-1
+3 k; wft(m"} , (2.20)
i=1
subject to 0<g¢; < max(pi,l pi) i=1,...,N—1), (2.21)
LN<th <UN( :1,,T,m:1,,M) (222)

3. Application to the GPIF

The GPIF manages asset allocation on the basis of the policy asset mix for five assets as
in Table 1; domestic bond(DB), domestic stock(DS), international bond(IB), international
stock(IS), and short-term asset(SA). Different three cases of the appreciation rate for total
factor productivity are shown in Ministry of Health, Labour and Welfare(2008)'% . In this
paper, we use the expected rates of returns estimated for the intermediate case. We examine
the model using the expected values, the standard deviation and the correlation coefficients
of the rates of returns shown in Table 3. The other parameters are as follows'*

e Proportional transaction cost rates
(DB) k1 = 0.2%, (DS) ko = 1.2%, (IB) k3 = 0.2%, (IS) ky = 1.2%

e Tracking error aversion : A =3

12The weight of asset N is

Ly for EW ™ >0
Wi — J Un for DW™ >0
1-— Z wa(m) otherwise.
i€In_1

BThey calculate three kinds of estimates for the appreciation rates for total factor productivity; 1.3%,
1.0% and 0.7%. They estimate the different expected rates of returns, respectively.

14The transaction costs used by the GPIF are not published, and there are a few previous studies which
describe the transaction costs. Sasaki(2006) sets 0.5% for stocks and 0.2% for bonds. Chida(2004) sets 1.2%
for stocks and 0.2% for bonds as the transaction cost rates including market impact costs. In this paper,
we use the rates in Chida(2004).

We set the tracking error aversion to three(\ = 3) from the following reason. As shown in Appendix B,
we may choose the same value as the risk aversion for the tracking error aversion in the case of the simple
mean-variance problem. It is published that the policy asset mix is derived by solving the mean-variance
optimization problem with the parameters in Table 3 under the constraints that the expected rate of return
is equal to 4.1%. The reciprocal of the dual value for the constraint corresponds to the risk aversion of
the objective function which consists of the expected value and the variance of the rate of return, and the
risk aversion is 2.99. The mean-variance optimization problem for the GPIF is different from the problem
shown in Appendix B because of adding some constraints. Unfortunately, we have no idea to determine
the appropriate value of X\ except the simple mean-variance problem. Therefore, we approximately assigned
three(A = 3) to the tracking error aversion.



e Boundary constraints for short-term asset(cash constraints)

(lower bound) Ly = 3%, (upper bound) Uy = 10%
e Number of sample paths : M = 10,000

Table 3: Return, risk and correlation

Domestic | Domestic | International | International | Short-term

bond(DB) | stock(DS) | bond(IB) stock(IS) asset(SA)

Expected return 3. 7% 6.0% 3. 7% 6.2% 2.2%

Standard deviation 5.45% 22.25% 13.44% 19.85% 3.71%
Correlation DB DS 1B IS SA

Domestic bond 1.00 0.15 —0.06 —0.05 0.45

Domestic stock 0.15 1.00 —0.26 0.27 —0.01

International bond —0.06 —0.26 1.00 0.55 —0.05

International stock —0.05 0.27 0.55 1.00 —0.12

Short-term asset 0.45 —0.01 —0.05 —0.12 1.00

All of the problems are solved using NUOPT/DFO added on the mathematical program-
ming software package called NUOPT (Ver. 14.1) developed by NTT DATA Mathematical
Systems, Inc. — on Windows XP personal computer which has 2.40 GHz CPU and 3GB
memory.

3.1. Numerical analysis

We examine the model for 28 combinations of four kinds of time intervals(At = 0.1, 0.2, 0.5, 1.0)
and seven kinds of time horizons(5, 10, 15, 20, 30, 40, 50 years)'>. Figure 1 is shown to
compare the results for different time horizons, and Figure 2 is shown to compare the results
for different time intervals.

Figure 1 shows that the no-trade ranges converge to certain values as the time horizon
becomes large. The shorter the time horizon is, the larger the no-trade ranges are on
average because investors tend to adopt the no-trade strategy to cut the trading costs on
the rebalancing point close to the maturity. Figure 2 shows that the no-trade ranges are
reduced as the time interval is large. The investors reduce the no-trade range and avoid
the increase in the tracking error calculated by the quadratic function because the investors
cannot trade assets except the time points in the discrete-time model. These results can
be also shown in the case of more than three assets as well as in Hibiki et al.(2014). The
relationship among the no-trade ranges of four risky assets is

DB > DS > IS > IB.

It is the same as the no-trade(permissible) ranges of the GPIF.

15The number of periods is calculated by years divided by the time intervals. For example, the number
of periods is 100 when At = 0.1 and 10 year horizon.
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Figure 1: Comparison of the results for different time horizons

This shows that the policy asset mix affects their no-trade ranges'®. We calculate the
different no-trade ranges for their target portfolios and show Figure 3 to verify the reason-
ableness of the results. We derive ten kinds of target portfolios for their expected rates of
returns using the mean-variance model with parameters in Table 3'7. We show the no-trade
ranges corresponding to the portfolios in the left-hand side of Figure 3, and the relationship
between the portfolio weights and the no-trade ranges in the right-hand side of Figure 3.
The expected rate of return of P1 is the lowest, and that of P10 is the highest in order. As
the results, the weights of DB become small and the weights of DS and IS have large and
similar values in proportion as the expected rates of returns of the portfolios become high.
The weights of IB become small toward the P10 after achieving the peak at P3.

16Figure 7 shows that the no-trade ranges become wide as the proportional transaction cost rates increase.
The no-trade ranges of the stocks become wide relatively to the bonds because the proportional transaction
cost rates of the stocks are 1.2%, and those of the bonds are 0.2%. The no-trade range is more affected by
the target ratio than the proportional transaction cost for the domestic bond. We conduct the sensitivity
analysis for the proportional transaction cost in detail in Section 3.2.

1"The GPIF uses the following constraints to derive the target portfolio; the target ratio of short-term
asset(cash) = 5%, the expected rate of return of the target portfolio = 4.1%, and the relationship among the
target weights of the assets is DS > I.S > IB. In particular, we impose constraints on the above-mentioned
relationship among asset weights as follows ; DS weight > IS weight + 1% and IS weight > IB weight + 1%.
We solve the problem by the mean-variance model, and obtain the optimal weights of 66.7% for DB, 10.4%
for DS, 8.4% for IB and 9.4% for IS. When we round the weights to 1% unit, the weights of the target
portfolio in Table 1 are obtained. The policy portfolio is the P3 portfolio. The other portfolios(P1 to P10
except P3) can be also derived by solving the mean-variance problems with the expected rates of returns of
3.9%, 4.0%, 4.3%, 4.5%, 4.7%, 4.9%, 5.1%, 5.3% and 5.5%, respectively.
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The right-hand side of Figure 3 shows that the no-trade ranges increase as the weights
approach 50%, and the no-trade ranges decrease as the weights lose touch with 50%. In
particular, the no-trade ranges of DS are similar to those of IS, and they become large as
the expected rates of returns of the portfolios increase because their weights are less than
50%. The no-trade ranges of DB are getting large for P1 to P6 portfolios, but they become
small after achieving the peak at P6. The no-trade ranges of IB become small from P3
portfolio. Meanwhile, the no-trade ranges of IB are getting large for P1 to P3 portfolios,
but they become small after achieving the peak at P3.

We examine the sensitivity of the optimal no-trade range of each asset to the objective
function value. In particular, we calculate the corresponding objective function to the
different no-trade ranges of the certain asset except which we fix the optimal no-trade
ranges of other assets. We show the graphs in Figure 4 where the horizontal axis is the
multiple of the optimal no-trade range, and the vertical axis is the multiple of the objective
function value. The values of 1 on the both axes correspond to the optimal values. Figure
4 shows the results for the case of At = 0.1 and 5 year horizon on the left-hand side, and
for the case of At = 0.1 and 10 year horizon on the right-hand side.
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Figure 4: Objective function values for different no-trade ranges

The degrees of convexity of the objective function are DS, IS, IB, and DB in order. This
order is the same as that of their volatilities. The increase in tracking error needs to be larger
than the decrease in the transaction cost to obtain the convex objective function without
degeneracy because the transaction costs approach zero as the no-trade ranges become large.
The volatilities of the assets affect the tracking error, and therefore the order of the degrees
of convexity is the same as that of the volatilities. As the no-trade ranges become large, the
objective function is not degenerate, but the increase in the objective function values for IB
and DB get smaller. This means that the sensitivity of the no-trade ranges to the objective
function is small and we have the possibilities of solving the problems unstably. We need
to pay attention to it when solving the problems.

Figure 5 shows the objective function values for the different no-trade ranges of DB and
IB calculated under four kinds of years with At = 0.1, and four kinds of time intervals with
10 year horizon. The sensitivity of the objective functions for DB are similar around the
optimal solution even the different number of years(time horizons) and the different time
intervals. In addition, the objective function values are insensitive to the larger no-trade
range of DB, and the curves begin to flatten at the smaller no-trade range(smaller multiple
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of the horizontal axis in Figure 5) as the number of years and the time intervals are smaller.
On the other hand, the curve of the objective function value for IB tends to be flattened as
the time intervals are large and the time horizons are short.
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Figure 5: Objective values for different no-trade ranges of domestic and international bonds

We examine the probability that the rebalance is needed to impose the cash constraints
even if the asset weights are within the no-trade ranges. We call it cash adjusted proba-
bility. We show the probability and the computation time in Figure 6. The cash adjusted
probability is defined as the sum of the probabilities that the weight of asset N is below
the lower bound Ly and above the upper bound Uy. It is calculated by Equation (3.1)
using the excess weight EWt(m) and the deficit weight DWt(m) in the simulation procedure
of Section 2.2,

M
1
YT M Z Z (1{EWt(m)>0} + 1{DW§”L>>0}> , (3.1)

t=1 m=1

where 1{ A} denotes the indicator function which value is 1 if the condition A is satisfied, or
0 otherwise. The cash adjusted probability becomes small for the small time interval or the
long time horizon because the variability of the risky asset for a period is relatively small.
The computation time increases for the smaller time interval and the longer time horizon
because the number of periods increases.
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Figure 6: Cash adjusted probabilities and computation time

3.2. Sensitivity analysis

We conduct the sensitivity analysis for three kinds of parameters(proportional transaction
cost rate of stocks ko and ky, tracking error aversion A and cash constraint parameter «) as
follows.

ko = ks = 0.2%,0.6%,1.0%,1.2%, 1.5%, 2.0%
A = 1,2,3,4,5,10,20,30
a = 0.0,05,1.0,1.5,2.0,2.5

We set the lower bound Ly and the upper bound Uy using the following equations,

Ly = (1 — a)py + LY for lower bound,
Ux = (1 — a)py + aUy for upper bound,

where LY = 3%, UY = 10%, py = 5%, At = 0.1(year) and the time horizon is 10 years.

We show the results of the sensitivity analysis in Figures 7 to 9. The left sides include
the no-trade ranges of the four risky assets and the right sides include the objective function
values, transactions costs and tracking errors.

Figure 7 shows that the transaction costs increase in proportion to the cost rates. How-
ever, the no-trade ranges become large to avoid the trading assets, and tracking error in-
creases simultaneously. Figure 8 shows that the no-trade ranges decrease to keep the tracking
error small as the tracking error aversion increases. The no-trade ranges are small but con-
sequently the transaction costs increase because of the frequent trading. Figure 9 shows
that the no-trade ranges of DB become large, but those of other assets become small as the
range of the bounds of the cash constraints(or the multiple o) becomes large. When the
multiple « is more than one(which corresponds to the lower bound of 3% and the upper
bound of 10%), the no-trade ranges become insensitive to the bounds of constraints.

3.3. The comparison of the optimal no-trade ranges with the actual weights

We examine the actual weights published quarterly from March 2008 to December 2012 by
the GPIF'®. Figure 10 shows the actual weights(‘Actual W’), the policy asset mix(‘PAM’)

18The GPIF has managed their investment assets using the no-trade ranges in Table 1 since March 2008.
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and the no-trade ranges of the GPIF(‘GPIF’), and the optimal no-trade ranges for 5 and
50 year problems solved by the DFO method using the parameters of the basic analysis in
Section 3.1, where the rebalancing interval is a month(At = L.

12
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Figure 10: The optimal no-trade ranges and the actual weights

The actual weights have moved within the no-trade ranges set by the GPIF because their
ranges are relatively large. The optimal no-trade ranges derived in this paper are smaller
than those of the GPIF. The actual weights have moved almost just within the optimal
no-trade ranges except four cases'”, and thus the reasonable ranges can be derived to some

extent??.

4. Time-dependent no-trade ranges in a finite horizon
4.1. Finite horizon model

In this paper, we formulated the model in Section 2 and derived the optimal constant and
symmetric no-trade ranges in the numerical analysis in Section 3 because it is easy to employ
the rebalance rule in practice with the constant and symmetric no-trade ranges with respect
to the policy asset mix. The results in Subsection 3.3 show the optimal no-trade ranges are
reasonable in examining the actual weights. Meanwhile, the previous studies show that
the optimal no-trade boundaries are time-dependent in a finite horizon. Then we derive

YFour cases are IS in December 2012 for 5 year problem, IS in September and December 2012 for 50
year problem, and DB and IB in December 2012 for 50 year problem. The probability of the violation is
1.25%(= 1/80) for 5 year problem, and 3.75%(= 3/80) for 50 year problem.

20Tt is difficult to evaluate the validity of the optimal ranges because the optimal values depend on the
parameters such as the proportional transaction costs and the tracking error aversions. This is one of the
ways to evaluate the validity.
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the optimal time-dependent and symmetric no-trade ranges, and compare them with the
constant and symmetric ranges.

Hibiki et al.(2014) formulate the model with the time-dependent no-trade boundaries in
the Leland approach(1999) which minimizes the objective function consisting of the trans-
action costs and the tracking errors. The boundaries are expressed by the exponential
functions to show that the ranges between two boundaries become large as the time to ma-
turity (time horizon) gets small. It is consistent with the previous studies for the problems
with the CRRA utility function(Gennotte and Jung(1994), Liu and Loewenstein(2002)). In
this paper, we express the time-dependent no-trade boundaries ¢;(t) in Equation (4.1) by
reference to Hibiki et al.(2014),

G(t) = a; {1+ e PTTHAOL (G =1 ... N —1), (4.1)
where «;, § and  are the parameters determining the ranges. When 7" — o0,

lim ¢;(t) = a;, (4.2)
T—o0
and the equations can express the constant boundaries in the infinite horizon. Moreover,
they can express the various function forms by varying # and v. When ¢t = At, the bound-
aries are approximated by «; as follows,

ai(At) = a; (14 ve77). (4.3)

This shows the range of asset i at time At is almost the same as the value of «;2'. Therefore,
«; is called the initial no-trade range. When ¢t = T,

G(T) = oy (1 +~ve 721, (4.4)

and the ranges at time T are affected by the value of ~.

The problem with N 4+ 1 variables which consist of three kinds of variables «;, § and
~v is solved by the DFO method, and the optimal time-dependent and symmetric no-trade
boundaries can be derived.

4.2. Numerical analysis in finite cases

We solve the problems for some combinations of four kinds of time intervals(At = 0.05, 0.1, 0.2, 0.5)
and four kinds of time horizons(5, 10, 15, 20 years), and derive the optimal time-dependent
ranges by Equation (4.1). Figure 11 is shown to compare the results for the different time
horizons. The horizontal axis is the time to maturity. The graphs above are the results for

At = 0.1, and the graphs below are for At = 0.5. The left graphs are the results for the
domestic assets, and the right graphs are for the international assets.

When the time intervals are the same, the no-trade range ¢;(t) is determined by the time
to maturity regardless of the length of the time horizon except a domestic bond in 5 year
problem. The no-trade ranges are almost the same until the time to maturity is about three
years, but the ranges become large as the time to maturity gets small.

Figure 12 is shown to compare the results for the different time intervals. The graphs
above are the results for 5 year problems, and the graphs below are for 20 year problems.

When the time interval is large, the no-trade range is reduced to avoid the increase in
the tracking errors because the investors cannot trade assets except the time points in the
discrete-time case.

21 Technically, it depends on the values of 8 and 7.

17



At =0.1: Domestic assets At=0.1: International assets
T 10% T

0% 0%

25% : ‘ : : ‘ : ‘
i | | | oL 7 S —— L R I
! 5 years: DB — — b years: DS 5 years: [B =— — 5 years! IS
20% W\~ | 10 years: DB — — 10 years: DS 8% Y 10 years: IB — — 10 years: IS
) i 15 years: DB — — 15 years: DS LT I 15 years: IB — — 15 years: IS ~
o ! . . e
£ 15% . 20 years: DB — — 20 years: DS - - S 6% - 20 years: [B — — 20 years: IS~
= | | | | =
g : | | | g 5%
] i i i | &
2 10% § | | | B 4%
] | | | o}
Z ) ‘ : : < 3%
5% \; ‘ ‘ 2% |
! ! 3 — 1% !
0% ) 1 1 1 0% 1
0 1 2 3 4 5 0 1 2 3 4 5
Time to maturity (years) Time to maturity (years)
At =0.5: Domestic assets At=0.5: International assets
14% : : : ‘ 6% : : :
7777777 L 5 years: DB — — 5years: DS _ - . ‘_ _ ' .
2N v |
2 10% N\ 15 yearisf EE_ — 15 yearsf Es - 5 4 15 years: IB — — 15 years: IS
g 20 years: DB — — 20 years: DS =] 20 years: IB — — 20 years: IS
g 8% | | | Z ! ! !
5 g 3% TN [ T T
2 6% g | | |
5 £ e |
2 Z [ e
0 i I
2% 1% \ | 3 !
1 1 1
0 1 2 3 4 5

Time to maturity (years)

Figure 11: Results for the different time horizons in finite cases

We compare the time-dependent strategy with the constant strategy. Theoretically,
the optimal ranges are time-dependent in the finite case, and constant in the infinite case.
The no-trade ranges are almost the same when the time point is far from the maturity.
It is expected that the initial no-trade ranges for the time-dependent strategy are close
to the ranges for the constant strategy as the maturity is long because the ranges near the
maturity are averaged over the whole periods. The plots of two values are shown to examine
the relationship between them in Figure 13, where the horizontal axis is the constant no-
trade range(q;), and the vertical axis is the initial no-trade ranges for the time-dependent
strategy(c;). We solve the 50 year problem additionally to compare the constant strategy.
Five plots for each time interval in the graph correspond to the time horizons of 5, 10, 15,
20 and 50 years. The points on the 45-degree line could be the same values.

The constant ranges are larger than the initial ranges for the time-dependent strategy.
The shorter the maturity is, the larger the constant range is. The longer the maturity is,
the closer both values are, and the plots become close to the 45-degree line. As the result,
both optimal values are almost the same for 50 year problem. When we need to decide the
‘constant’ no-trade range by the finite horizon model for the time-dependent strategy, we
can use the initial no-trade ranges for 50 year problem.

In Section 3, we solve the problem for the constant strategy to use the results in practice
despite of the finite time horizon case. However, the objective function value increases
more than the time-dependent strategy. We define the deterioration ratios of the objective
function values in Equation (4.5), and show them in Figure 14.
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Figure 12: Results for the different time intervals in finite cases

Objective function value for constant strategy

Deterioration ratio = -1 (4.5

Objective function value for time-dependent strategy

The longer the maturity is, the smaller the deterioration ratio is. This reason is that

the range for the constant strategy is closer to the initial range for the time-dependent

strategy as the maturity becomes long. The ratio is about 2% for the case of At = 0.1

and 20 year horizon. Therefore, the constant strategy is much less disadvantaged than the
time-dependent strategy as long as the maturity is more than 20 years.

5. Conclusion

In this paper, we derive the optimal solutions numerically for five asset problem with trans-
action costs and the symmetric no-trade ranges which were not solved in the previous
literatures but are needed to solve in practice. In particular, we solve the optimal problem
to decide the no-trade ranges according to the parameters used in the GPIF. It is difficult
to evaluate the optimal no-trade ranges themselves compared to the ranges used in the
GPIF directly because the GPIF does not publish how to decide the ranges. But, the actual
weights have moved almost just within the optimal no-trade ranges derived by the DFO
method, while the no-trade ranges set by the GPIF are relatively large in comparison with
the actual weights. We can show the theoretical methodology and reasoning to decide the
optimal no-trade ranges though they are different from the permissible ranges of the GPIF.

We may need to rebalance assets even within the no-trade ranges when the bound-
ary constraints for cash are imposed. We clarify the fact and build the algorithm in the
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Figure 13: Comparison of the time-dependent strategy with the constant strategy
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simulation procedure in the discrete-time model. We conduct the sensitivity analysis to
examine the influence to the no-trade ranges for the different proportional transaction cost
rates, tracking error aversions and cash constraints. In addition, we compare the optimal
time-dependent no-trade ranges with the constant no-trade ranges. The numerical results
show the possibilities of applying the DFO model to the practical problem determining the
symmetric no-trade ranges.

In our paper, we assume we formulate the trade-off between transaction costs and track-
ing error under a given policy asset mix because the problem is defined, based on the
Leland(1999) and Hibiki et al.(2014). However, we may need to solve the problem where
the no-trade ranges and the target weights are simultaneously determined under the mean-
variance objective. We would like to try to solve the problem in our next future research.
On the other hand, we assume the asset returns are normally distributed in this paper
because we develop the model based on Leland(1999) and the GPIF use the parameters
for the mean-variance model. Various stochastic processes are used to represent the return
process such as a time-series model, a jump model, and a model with copula among asset
returns. In the future research, we need to adopt the more sophisticated model, and solve
the optimal problem by the DFO approach.

Appendix

A. Comparison of the symmetric case with the general case

A parallelogram-like no-trade region is optimal for the asset allocation problem with trans-
action costs in general as in the left-hand side of Figure 15. On the other hand, we derive the
optimal symmetric no-trade ranges (qi, ¢2) from a practial perspective, which is equivalent
to rectangular regions where the policy asset mix (p1,p2) is the center of region as in the
right-hand side of Figure 15.
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Vi ! V! X
_____ :X [ * - ———
__________ %,
__q_l__%___q_l___
[ (p1,p2) o (p1,p2)
)
z: e T
! . Z Y
i : Y w1 i ' w1
> 1

Figure 15: No-trade regions

In this section, we compare the constant and symmetric no-trade ranges in practical use
with the general no-trade region for three-asset case(of two risky assets and a riskless asset).
The baseline parameters in the analysis are shown in Table 4, used in Leland(1999) and
Hibiki et al.(2014).

We conduct the sensitivity analysis of the proportional transaction costs, the correlation
coefficients and the tracking error aversions. Ten kinds of values of each parameter in Table
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Table 4: Baseline parameters

Expected rate of return
Standard deviation
Correlation

Discount rate

Proportional transaction costs
Policy asset mix

Tracking error aversion

Time interval and horizon

M1 = MU = 125%
01 — 09 = 20%
p12 = 0.2
r="75%
ki =ky = 1%
p] =p5; =04
A=1.3
At = 0.1, 10 years

5 are examined, and therefore thirty problems are solved in total?? .

Table 5: Parameter values for the sensitivity analysis

1 2 3 4 5 6 7 8 9 10
Transaction costs | 0.1% 0.3% 0.5% 0.7% 1% 1.5% 2% 2.5% 3% 3.5%
Correlation -03 -02 -01 00 01 02 03 04 05 0.6
TE aversion 0.5 1 1.3 2 3 4 5 10 20 30

>¢ Underlined parameters are baselines in Table 4.

A.1. General case(Hibiki et al.(2014))

The results solved by the DFO method for the three-asset case of Leland model(1999) are
obtained in Hibiki et al.(2014). Figure 16 shows the no-trade regions where the origin is the
policy asset mix for the sensitivity analysis, and Figure 17 shows the mean no-trade ranges
from the corner points to policy asset mix, which may be compared with the symmetric
no-trade ranges in Section A.2.

Proportional transaction cost rates —*—k=0.1% —=—1i=0.3%

20%

Correlation coefficients
T

Tracking error aversions

—a—ki=0.5% —»—ki=0.7%

——17=0.5 —=—)\=1
#-)=3 —e—)=4 ——)=p
15% - —a—X=20 —o—)\=30

] ]

—4—)\=1.3 —x—1A=2
—&— =10

15%
10%

5%

0%

-5%

No-trade range of asset 2
No-trade range of asset 2

-10%

-15%

-20%
-20% -15% -10% -5% 0%
No-trade range of asset 1

5% 10% 15% 20% 15%  10% 5% 0% 5% 10%  15% 5% c10% 6% 0% 5%  10%  15%

No-trade range of asset 1 No-trade range of asset 1

Figure 16: No-trade regions where the origin is the policy asset mix

As the proportional transaction cost rate becomes large, the no-trade region gets wider
to avoid increasing the transaction cost. As the tracking error aversion becomes large,
the no-trade region gets smaller to prevent losing touch with the policy asset mix. The
shape of the no-trade region is a rectangle at zero correlation. The shape changes as the
correlation deviates from zero. As the correlation becomes positively large, the shape of

22When we examine the sensitivity of the proportional transaction costs, ten cases are solved under
correlation of 0.2 and tracking error aversion of 1.3 as in Table 4.
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Proportional transaction cost
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Proportional transaction cost rates Correlation coefficients Tracking error aversions

0%

Figure 17: Mean no-trade ranges from the policy asset mix

no-trade region is like a parallelogram which expends from top left to bottom right. As the
correlation becomes negatively large, the shape of no-trade region expands from top right to
bottom left?®. When we change the parameters associated with the proportional transaction
cost rates and the tracking error aversions, the mean no-trade ranges and the sizes of the
no-trade regions vary in a similar way. However, the mean no-trade ranges are less sensitive
to the correlation than other parameters while the shapes of the no-trade regions are more
sensitive to the correlation.

A.2. Symmetric case

We calculate the optimal constant and symmetric no-trade ranges so that they can be
obtained in the form of p; + ¢;%, where p; is the policy ratio of asset i and g; is the no-trade
range of asset 7. As in Section A.1, we show the results of the sensitivity analysis derived
by the DFO method in Figure 18.

Proportional transaction cost Correlation Tracking error
16% [======—==——=m——-m——-— - 10% === ==mmmmmmmmmm - 4%

- B Asset 1 mAsset 1

M Asset 1
12% EAsset2 __ . 9% F-——----—- . B Asset 2

Asset 2

10%
8% 8%

6%

No-trade range
No-trade range

4% %

2%

0% 6%

0.3 -0.2 -0.1 0.0 0.1 02 03 04 05 06 05 1 13 2 3 4 5 10 20 30

Proportional transaction cost rates Correlation coefficients Tracking error aversions

Figure 18: No-trade ranges from the policy asset mix

As the proportional transaction cost rate becomes large, the no-trade region gets larger.
As the tracking error aversion becomes large, the no-trade region gets smaller to avoid losing
touch with the policy portfolio. These results are consistent with those of the average of
the general no-trade ranges. However, in the case of sensitivity analysis for the correlation,
the results of the symmetric no-trade ranges are different from the mean ranges in Figure
17 because the shapes of the general no-trade regions are sensitive to the correlations. In
particular, the symmetric no-trade ranges are larger as the correlations are larger in the
cases of less than the correlation of 0.5. The symmetric no-trade ranges are smaller after

23The shape of the no-trade region is square in the zero correlation case because the parameters of both
assets are same. The shapes are like rhombus in the non-zero correlation cases.
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peaking at the correlation of 0.5. However, the symmetric no-trade ranges are not sensitive
to the correlations. Therefore, we cannot reflect the influence of the different correlation to
the no-trade ranges in the case that the no-trade ranges are symmetric.

The objective function values for the symmetric cases are larger than those for the general
cases because the symmetric problems are solved under the constraints of the symmetric
no-trade ranges. We show the increasing rates of the objective function values in Figure 19.

Proportional transaction cost Correlation Tracking error
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0.1% 0.3% 0.5% 0.7% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 03 02 01 0 01 02 03 04 05 0.6 05 1 13 2 3 4 5 10 20 30

Proportional transaction cost rates Correlation coefficients Tracking error aversions

Figure 19: Increasing rates of the objective function values

The objective function values increase only about 0.5% in the case of the sensitivity
analysis for the proportional transaction costs and the tracking error aversions. However,
the objective function values increase between 0.5% and 5% in the case of the sensitivity
analysis for the correlations. As the absolute values of correlations are large, the objective
function values are larger because the no-trade regions change shape from the rectangle to
the parallelogram. But the maximum increase in the objective function value is about 2%
between —0.3 and 0.5 correlation coefficients.

Finally, we discuss the computation time. Average computation time is about 17 min-
utes for 30 general cases. Though it is acceptable computation time to solve the decision
problem, we can solve the problem to decide the symmetric no-trade ranges only in about
90 seconds on average. Computation time decreases about 90%. The fact shows the use of
the symmetric no-trade ranges is effective in the computational aspect.

B. Tracking error and mean-variance utility
We explain the rationale for modeling the trade-off between tracking error and transaction
costs in our model by showing the relationship between tracking error and mean-variance
utility in accordance with Leland(1999). At first, the mean-variance utility for N-asset case
can be expressed as

Uw) =p"w - w"Vw, (B.1)
where g € RY is an expected return vector, V. € R¥*¥ is a covariance matrix, w € R¥ is
a weight vector, and A is a risk aversion.

The mean-variance utility maximization problem can be formulated as

Maximize  U(w), (B.2)
subject to  e'w =1, (B.3)
where e = (1,1,...,1)T € RY. The optimal solutions w* can be found using Lagrangian
multiplier method as follow,
P S e"Vlu—2)\
w = ﬁv ([J, — 7]6)7 where n = W (B4)
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Suppose that the weight vector at time 7 is w(7) € R, and the trading weight vector is
|Aw| ?*. The mean-variance utility can be expressed as

Ulw(r)) = (p w(r) — k:T|A'w|) —w(7)"Vw(r), (B.5)

for the problem with the proportional transaction cost because the transaction cost k:T]Aw|
is subtracted from the expected portfolio return p'w(7).

In this situation, investors will minimize the utility loss which is the difference between
the mean-variance utility at w* and at w(7), and it can be expressed in what follows.

UL = U(w")—U(w(r))
= (pw — M Vw') — (pTw(r) — kTAw| — Aw(r)TVw(7r))
p'(w* —w(r)) — M T Vw* +  w(t) " Vw(r) + k' | Aw| (B.6)

We substitute the optimal solutions (B.4) into Equation (B.6), and we obtain the following
equation.
UL = Mw(r) —w")"V(w(r) —w*) + k' |Aw| (B.7)

The first term of Equation (B.7) shows tracking error, and the second term shows transaction
cost. Though we need to pay attention to the fact that this can be applied to the simple
mean-variance model, this is the rationale for modeling the trade-off between tracking error
and transaction cost in our model as well as the Leland model(1999). Moreover, this would
imply that we may choose the same “\” as the risk aversion for the tracking error aversion.
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