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Abstract— In recent years, some previous papers show that 

better performances are obtained by solving asset allocation 

problem using risk-adjusted implied distribution estimated 

from market option prices, compared with historical 

distribution. (Kostakis et al. [8], Kimura and Hibiki [7]) 

However, Kiriu and Hibiki [5] show that it gives worse 

performance than implied risk-neutral distribution (RND) 

because it is risk-adjusted by a backward-looking approach. In 

this paper, we solve the optimal asset allocation problem with 

risk-adjusted implied return distribution based on the recovery 

theorem so that it can be also adjusted by a forward-looking 

approach. The recovery theorem is originally proposed by Ross 

[9], and it is generalized by Jensen et al. [4].  We examine the 

empirical performance for the two risk-adjusted methods, but 

we call them “RT” for simplicity hereafter. There are several 

previous studies of applying the RT to simple investment 

strategies. However, the performance in the optimal asset 

allocation problem has not been studied.  We employ the RT in 

a finite state model, and examine how we discretize states. We 

estimate distributions with different ranges of states, and we 

find that the first moment is strongly related to the percentage 

of distributions included in the range. Therefore, we employ 

dynamic ranges based on the percentage of distributions.  We 

solve the four asset allocation problem with two stocks and two 

bonds. We use historical distribution, implied RND, and risk-

adjusted implied distributions by RT as distribution of stocks 

and compare the performance. We implement the backtest 

using dataset from 2005 to 2018. At first, we examine the 

performance for asset allocation with a risk-adjusted implied 

distribution of a single stock, and we find that it gives a better 

performance than historical distribution and implied RND. In 

addition, we utilize the risk-adjusted implied distribution of two 

stocks, and examine the performance. We find it is better than 

a single stock case. 

Keywords— financial engineering, optimal asset allocation, 

recovery theorem 

I. INTRODUCTION

It is necessary to estimate the return distributions of assets 

to solve the optimal asset allocation problem. It is common to 

use a distribution estimated by historical asset price data. 

However, a weak point of using historical distribution is that 

it is difficult to cope with sudden changes of market 

environment due to being affected by past data. Then, in 

recent years, some previous papers show that better 

performances are obtained by solving asset allocation 

problem using risk-adjusted implied distribution estimated 

from option prices, compared with historical distribution. 

(Kostakis et al. [8], Kimura and Hibiki [7]). However, Kiriu 

and Hibiki [5] show that it gives a worse performance than 

implied risk-neutral distribution (RND) because it is risk-

adjusted by a backward-looking approach. 
Recently, Ross [9] developed the recovery theorem (RT) 

which enables implied RND to be risk-adjusted by the 
forward-looking approach using option data under some 
assumptions. In addition, Jensen et al. [4] proposed the 
generalized RT which relaxes the time-homogeneity of Ross’s 
RT.  We call these two theorems “RT” for simplicity hereafter. 
This gives the forward-looking risk-adjusted method without 
historical data for the implied RND, and  it is expected to 
estimate the better distribution.   

There are several previous studies of applying the RT to 
simple investment strategies. However, to the best of our 
knowledge, the strategies constructed using distribution 
adjusted by the RT has not been studied in the optimal asset 
allocation problem. 

In this paper, we examine the effect of using the RT in the 
optimal asset allocation, through the comparison of the 
performance of the risk-adjusted distribution by the RT with 
those of historical distribution and implied RND. Specifically, 
we solve the asset allocation problem by the one-period model 
of minimizing conditional value at risk (CVaR), and 
implement the backtest using dataset from 2005 to 2018. We 
consider the problem assuming a Japanese investor who 
invests in the four assets; domestic stock, foreign stock, 
domestic bond, and foreign bond. These four assets are 
commonly used to determine asset allocation by Japanese 
investors. For example, the Government Pension Investment 
Fund of Japan defines the reference portfolio based on the four 
assets. 

We use a historical distribution, implied RND, and risk-
adjusted implied distributions by RT as distributions of stocks 
and compare the performance.  We find the risk-adjusted 
implied distribution outperforms historical distribution and 
implied RND in terms of the downside risk and the efficiency 
of the portfolio. Moreover, the effect is even greater if risk-
adjusted implied distributions used for two-stock case than for 
single-stock case. 

II. RECOVERY THEOREM

The RT is the theorem which shows that the real world 

probability distribution and pricing kernel representing 

investor’s risk preference can be recovered from risk-neutral 

distribution (state price) estimated from option prices under 

the following two assumptions. 

1. The market is complete and there are no arbitrage

opportunities

2. It is assumed that a representative investor follows time

additive intertemporal expected utility theory

Views expressed in this paper the authors’ and not necessarily those of 

their organizations. 
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The state of market 𝑠𝑖  is represented by discrete state 

space {𝑠1, 𝑠2, … , 𝑠𝑆} and we define each state as the return 
of option underlying asset, 𝑟𝑖. Let 𝜋𝑡,𝑗 denote the state price 

for the transition from 𝑠1 at the present time to 𝑠𝑗 at time t and 

𝑞𝑡,𝑗  risk neutral probability, 𝑓𝑡,𝑗  the real world transition 

probability, 𝑚𝑡,𝑗 pricing kernel. In this paper, we estimate the 

real world probability distribution using the RT by the 

following three procedures according to the previous studies, 

such as Kiriu and Hibiki [6], and Ito et al. [3].  

There are two types of the recovery theorem; time 

homogeneous case and non-homogeneous case.  We call the 

former RRT (Ross’s RT), and the latter GRT (Generalized 

RT) in order to distinguish them hereafter. In this paper, we 

employ them to obtain the risk-adjusted implied distribution. 

 

A. Estimating the state price matrix 𝜫 from option data 

We estimate the state price matrix 𝚷 using the relation 

between option price and state price introduced by Breeden 

and Litzenberger [2]. The state price π(𝑘, 𝑡)  is expressed 

using call option price c(𝑘, 𝑡) as, 

π(𝑘, 𝑡) =
𝜕2𝑐(𝑘, 𝑡)

𝜕𝑘2
    (𝑡 = 1, . . . , 𝑇) (1) 

where k is a strike price and t is a maturity. 

The state price in Equation (1) is continuously distributed.  

The RT by Ross [9] and Jensen et al. [4] is developed under 

a finite state space, and therefore we obtain the state price 

matrix 𝚷 by discretizing  π(𝑘, 𝑡) numerically. 

 

B. Estimating the normalized marginal utility and 

subjective discount factor 

At first, we explain the GRT. We estimate the normalized 

marginal utility vector h and subjective discount factor 𝛿 

from the state price matrix 𝚷  for GRT.  A utility 

maximization problem of a representative investor with a 

time additive intertemporal utility is formulated as 

max
𝑐1

 𝑈(𝑐1) + 𝛿𝜏𝑡 ∑𝑓𝑡,𝑗𝑈(𝑐𝑗)

𝑆

𝑗=1

    (𝑡 = 1, . . . , 𝑇), (2) 

 

subject to 𝑐1 + ∑𝜋𝑡,𝑗𝑐𝑗

𝑆

𝑗=1

= 𝜔   (𝑡 = 1, . . . , 𝑇), (3) 

where 𝑐𝑗 is consumption at state 𝑠𝑗, 𝑆 is the number of 

states,  𝑈(𝑐𝑗) is a utility of a representative investor with 𝑐𝑗, 

𝜏𝑡 is the length of time to t, and 𝜔 is an amount of wealth of 

a representative investor.  The optimization problem can be 

solved employing the method of Lagrange multiplier, and 

we can get the following equation. 

𝛿𝜏𝑡𝑓𝑡,𝑗𝑈′(𝑐𝑗) = 𝑈′(𝑐1)𝜋𝑡,𝑗   (𝑡 = 1, . . . , 𝑇; 𝑗 = 1, . . . , 𝑆) (4) 

We define a normalized marginal utility for state 𝑠𝑗 as ℎ𝑗 =

𝑈′(𝑐𝑗) 𝑈′(𝑐1)⁄  so that the marginal utility 𝑈′(𝑐1) can be 

equal to one for consumption 𝑐1.  Equation (4) can be 

rewritten as  

𝜋𝑡,𝑗 = 𝛿𝜏𝑡𝑓𝑡,𝑗ℎ𝑗   (𝑡 = 1, . . . , 𝑇; 𝑗 = 1, . . . , 𝑆). (5) 

It can be rewritten using matrices as 

𝚷 = 𝐃𝐅𝐇 ⟺ 𝐅 = 𝐃−𝟏𝚷𝐇−𝟏 (6) 

where H is diag(1, ℎ2,…, ℎ𝑆), D is diag(𝛿𝜏1 , 𝛿𝜏2 ,…, 𝛿𝜏𝑇). In 

addition, since F is a stochastic matrix, 

(𝐃−𝟏𝚷𝐇−𝟏)𝐞 = 𝐞 ⟺ 𝚷𝐇−𝟏𝐞 = 𝐃𝐞 (7) 

or 

[

𝜋1,1 ⋯ 𝜋1,𝑆

⋮ ⋱ ⋮
𝜋𝑇,1 ⋯ 𝜋𝑇,𝑆

]

[
 
 
 
 

1
ℎ2

−1

⋮
ℎ𝑆−1

−1

ℎ𝑆
−1 ]

 
 
 
 

= [
𝛿𝜏1

⋮
𝛿𝜏𝑇

] . (8) 

Equation (8) is not easy to solve due to nonlinearity.  We 

calculate the first-order of Taylor series of 𝛿𝜏𝑡  in order to 

solve it linearly.  The Taylor series of 𝛿𝜏𝑡  at 𝛿 = 𝛿0 is 𝛿𝜏𝑡 =

𝑎𝑡 + 𝑏𝑡𝛿，𝑎𝑡 = −(𝑡 − 1)𝛿0
𝜏𝑡，𝑏𝑡 = 𝑡𝛿0

𝜏𝑡−1
 , 

for the linear approximation.  Therefore Equation (8) is 

approximated as 

[

𝜋1,1 ⋯ 𝜋1,𝑆

⋮ ⋱ ⋮
𝜋𝑇,1 ⋯ 𝜋𝑇,𝑆

]

[
 
 
 
 

1
ℎ2

−1

⋮
ℎ𝑆−1

−1

ℎ𝑆
−1 ]

 
 
 
 

= [
𝑎1 + 𝑏1𝛿

⋮
𝑎𝑇 + 𝑏𝑇𝛿

] . (9) 

Moreover, it is rewritten as 

[
−𝑏1

⋮
−𝑏𝑇

𝜋1,2 ⋯ 𝜋1,𝑆

⋮ ⋱ ⋮
𝜋𝑇,2 ⋯ 𝜋𝑇,𝑆

] [

𝛿
ℎ2

−1

⋮
ℎ𝑆

−1

] = [

𝑎1 − 𝜋1,1

⋮
𝑎𝑇 − 𝜋1,𝑇

]. (10) 

Equation (10) is rewritten as B𝒉𝛿 = 𝒂𝜋 using a matrix B 

and vectors 𝒉𝛿 , and 𝒂𝜋.  The parameters h and 𝛿 are 

estimated by solving the following optimization problem. 

min
𝒉𝛿

‖𝐁𝒉𝛿 − 𝒂𝜋‖2
2 (11) 

0 < δ ≤ 1 (12) 

ℎ𝑗
−1 > 0   (𝑗 = 1, . . . , 𝑆) (13) 

Up to here, we explain the GRT, hereafter, we explain the 

RRT.  We estimate the transition state price matrix P for RRT. 

Denote the matrix whose last row is removed from 𝚷 by 𝚷−𝑇 

and the matrix whose first row is removed from 𝚷 by 𝚷−1. In 

addition, denote the first row of 𝚷 by 𝝅1, the first row of P 

by 𝒑1 . Since both 𝝅1  and 𝒑1  represent a state price 

distribution at current state, 𝝅1 = 𝒑1 . Using these, we can 

compute P as follows. 

min
𝑷

‖𝚷−𝑇𝐏 − 𝚷−1‖2
2    (14) 

subject to 𝝅1 = 𝒑1 (15) 

𝑝𝑖,𝑗 ≥ 0   (𝑖, 𝑗 = 1, . . . , 𝑆)    (16) 

where 𝑝𝑖,𝑗 is the transition state price from 𝑠𝑖 to 𝑠𝑗. 

Some previous papers (Audrino et al. [1], Kiriu and Hibiki 

[6], Ito et al. [3]) show that these problems ((11) ~ (13), (14) 

~ (16)) are ill-posed, and the solution is sensitive to the noise 

included in the option price data.  Then, we employ the 

method of Kiriu and Hibiki [6] for RRT, Ito et al. [3] for GRT 

which stabilizes the solution by introducing the regularization 

term in consideration of prior information in the objective 

function in this paper. For GRT, the objective function 

considering prior information is as follows. 
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min
𝒉𝛿

‖𝐁𝒉𝛿 − 𝒂𝜋‖2
2 + 𝜍 ∑(ℎ𝑠

−1 − ℎ𝑠
−1̅̅ ̅̅ ̅)

2
𝑆

𝑠=2

 (17) 

where 𝜍  is the regularization parameter, ℎ𝑠
−1̅̅ ̅̅ ̅  is the prior 

information of the marginal utility. In this paper, we set two 

types of the prior information, (i) risk neutral utility (ii) 

CRRA utility function. If we want to employ risk neutral 

utility, we should set ℎ𝑠
−1̅̅ ̅̅ ̅ = 1(𝑠 = 2, . . . , 𝑆). If we want to 

employ CRRA utility function, since we can express 

reciprocal of the marginal utility, ℎ𝑠
−1  as (1 + 𝑟𝑠)

𝛾𝑅  using 

relative risk aversion, 𝛾𝑅,  we estimate 𝛾𝑅 by solving (11) ~ 

(13) , and we set ℎ𝑠
−1̅̅ ̅̅ ̅. 

 

C. Estimating the real world transition probability matrix F 

The real world transition probability 𝑓𝑡,𝑗 can be calculated 

by (18) using the state price matrix 𝚷, marginal utility vector 

h, and subjective discount factor 𝛿 for GRT. 

𝑓𝑡,𝑗 =
𝜋𝑡,𝑗

𝛿𝜏𝑡ℎ𝑗

  (𝑡 = 1, . . . , 𝑇; 𝑗 = 1, . . . , 𝑆) (18) 

In the case of RRT, The real world transition probability from 

𝑠𝑖 to 𝑠𝑗, 𝑓𝑖,𝑗 can be calculated by (19). 

𝑓𝑖,𝑗 =
1

𝜆

𝜐𝑗

𝜐𝑖

 𝑝𝑖,𝑗 (𝑖, 𝑗 = 1, . . . , 𝑆) (19) 

where 𝜆  is the maximum eigenvalue of P, and 𝝊  is an 

eigenvector associated with 𝜆. 

The real world transition probability 𝑓𝑖,𝑗 is derived discretely.  

However, we transform the discrete function to the 

continuous probability function 𝑓(𝑟) by spline interpolation, 

where r is a return. 

 

III. ESTIMATING HISTORICAL DISTRIBUTION 

We employ historical or implied distribution for stocks, 

and historical distribution for bonds to solve the four asset 

allocation problem.  

We use the kernel density estimation to estimate the 

historical distribution in a non-parametric way because the 

implied distribution is non-parametrically derived. 

Let {𝑥1, 𝑥2, … , 𝑥𝑛}  be n observation data of historical 

return. The probability distribution function 𝑓�̂�(𝑥) estimated 

by kernel density estimation is given as 

𝑓�̂�(𝑥) =
1

𝑛𝑏
∑𝐾 (

𝑥 − 𝑥𝑖

𝑏
)

𝑛

𝑖=1

 (20) 

where K(∙) is a kernel function, b is the bandwidth of the 

kernel which affects the smoothness of probability 

distribution function. In this paper, we employ Gaussian 

kernel represented by (21) which is often used as kernel 

function K(∙). 

𝐾(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2  (21) 

Selection of the bandwidth strongly affects the results. If the 

bandwidth is too large, the probability density function is 

oversmoothed, whereas it is undersmoothed if the bandwidth 

is too small.  In this paper, we employ the bandwidth 

computed by the commonly used Silverman’s rule of thumb 

as follows. 

𝑏 =
0.9𝐴

𝑛1/5
 (22) 

Let 𝜎𝑥  denote the standard deviation of {𝑥1, 𝑥2, … , 𝑥𝑛}, and 

𝑄𝑅𝑥  denote the interquartile range of {𝑥1, 𝑥2, … , 𝑥𝑛} . A is 

denoted by min{𝜎𝑥, 𝑄𝑅𝑥/1.34}. 

 

IV. OPTIMAL ASSET ALLOCATION MODEL 

We compute the optimal asset allocation of minimizing 

the conditional value at risk for an 80% confidence level.  We 

adopt the perfect hedging strategy for foreign assets.  The 

hedging cost is calculated as the difference of risk-free 

interest rates between Japanese yen and U.S. dollar.  In 

addition, we assume that short sales are not allowed.  The 

notations used in the model are:  

1. Sets 

𝑖 ∶  superscript representing a path 

𝑗 ∶  subscript representing an asset 

𝐹 ∶  set of foreign assets 

2. Parameters 

𝐼 ∶  number of sample paths 

𝑛 ∶  number of assets 

𝑑 ∶  risk-free interest rate of Japanese yen 

𝑓 ∶ risk-free interest rate of U.S. dollar 

𝛽 ∶ confidence level of CVaR (ex. 𝛽 = 0.80) 

𝑟𝑗
𝑖 ∶ rate of return of asset 𝑗 on path 𝑖 

3. Decision variables 

𝑥𝑗 ∶ portfolio weight of asset 𝑗 

𝛼𝛽 ∶ 𝛽-VaR (Value at Risk) 

𝑞𝑖 ∶  shortfall below VaR on path i 

The model can be formulated as follows. 

Minimize CVaR = 𝛼𝛽 +
1

(1−𝛽)𝐼
∑ 𝑞𝑖𝐼

𝑖=1   

Subject to ∑ 𝑥𝑗

𝑛

𝑗=1

+ ∑(𝑓 − 𝑑)𝑥𝑗

𝑗∈𝐹

= 1  

 ∑𝑟𝑗
𝑖

𝑛

𝑗=1

𝑥𝑗 + 𝛼𝛽 + 𝑞𝑖 ≥ 0    (𝑖 = 1, . . . , 𝐼) 
(23) 

 𝑞𝑖 ≥ 0    (𝑖 = 1, . . . , 𝐼)  

 𝑥𝑗 ≥ 0    (𝑗 = 1, . . . , 𝑛)  

 

V. PRELIMINARY ANALYSIS 

We need to select the number of states and the range of 

states because of a finite state space model. However, we 

have the trade-off relationship between the number of states 

and the range of states.  The increase in the number of states 

makes the ill-posed problem difficult to solve stably, whereas 

the expansion of the range with fixed number of states makes 

it difficult to compute the expected return precisely which is 

affected by the wide interval between states in the middle part 

of the distribution.  Suppose we fix the number of states for 

computation.  The selection of the range of states affects the 

interval between states and the tail of return distribution.  If 

we adopt the constant state range to fix the interval, the tail 

may be cut largely, and it also affects the optimal asset 
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allocation. Then, we set the time-dependent state range 

dynamically.   

Specifically, we determine that the range of states is set 

dynamically so that it includes the most part of the implied 

RND obtained from the option data for the longest maturity.   

It is expected that the range can also cover the one-period 

(one month) distribution used in the asset allocation problem.   

Next, we discuss how much percentage (probability) of the 

implied RND is included in the range.  

Fig. 1 shows the relation between the percentage of the 

risk-neutral distribution of foreign stock for the longest 

maturity in the range and the expected return (the first 

moment of distribution) of the distribution estimated using 

GRT.  There are three curves in Fig. 1, each of which 

represents the relation on the day when the values of VIX 

(volatility index) are maximum, minimum, and median, 

respectively. For example, suppose that the percentage of 

implied RND for the longest maturity is set to 90% on March 

16, 2016.  We obtain 0.15% expected return.  Note that the 

level of the expected return of the distribution estimated using 

GRT on November 20, 2008 is expressed on the right vertical 

axis in Fig. 1 because of the different level from those of the 

other two days.   

 

 
Fig. 1. Relationship between the percentage of RND and the expected return 

estimated using GRT. 
 

According to Fig. 1, the expected return is dependent on 

the percentage of the distribution included in the range of 

states.  We find the expected returns calculated are similar to 

those of original distribution for the wide range, and they are 

stable for the percentage of 85 to 95% on any day.  Therefore, 

we change the range of states dynamically so that a 95% of 

the distribution can be included in the range. 

 

VI. BACKTEST 

A. Setting 

In this paper, we examine whether risk-adjusted implied 

distributions using RRT and GRT in the forward-looking 

approach make better performance than both historical 

distribution and implied RND. Then, we compare the 

performances among the five return distributions in Table 1. 

In addition, we examine three combinations of the implied 

distribution of assets each of which consists of domestic stock, 

foreign stock, and domestic and foreign stocks, respectively.  

The dataset is as follows. 

Asset price index  

1) Domestic stock: Nikkei 225 stock index 

2) Domestic bond: FTSE JPGBI (Japanese Government Bond 

index)  

3) Foreign stock: S&P 500 stock index 

4) Foreign bond: FTSE USGBI (U.S. Government Bond 

index): 

Risk-free interest rate 

1) Japanese yen: one month JPY LIBOR 

2) U.S. dollar: one month USD LIBOR 

Option price 

1) Japanese stock option: Nikkei 225 index option 

2) U.S. stock option: S&P 500 index option 

We use the data of ATM (At The Money) option and 

OTM (Out of The Money) option in terms of the liquidity. 

We utilize the historical distributions for domestic and 

foreign bonds, which are estimated by kernel density 

estimation using rolling window size of 60 months for all 

cases. The dependency structure between assets is expressed 

by t-copula for representing the tail dependency. Then, we 

generate 20,000 sample paths for the joint probability 

distributions of the four assets’ returns, and compute the 

optimal asset allocation. The portfolio is rebalanced at the 

beginning of each month. We implement the backtest using 

dataset from January 2005 to September 2018, and we set a 

95% of implied RND as the range of states according to the 

preliminary analysis.  The number of states is 51.  

 

B. Performance in the case of a single stock 

⚫ Domestic stock case 

     We show the summary statistics of performance of the 

model with each distribution of domestic stock in Table 2.  

All the values are on a monthly basis.  The best values are 

bold among five cases, and the worst values are italic.  Mean 

returns are almost the same as each other.  However, we find 

the “RRT” (Case 3) gives the best performance in terms of 

standard deviation, skewness, 80%-CVaR, Maximum 

Drawdown (MDD), Sharpe ratio and CVaR ratio.  The 

performances of the risk-adjusted distributions by the RT 

(Case 3 to 5) are also superior to those of historical 

distribution (Case 1) and implied RND (Case 2).  Therefore, 

we can improve the performance by employing the risk-

adjusted implied distribution in the forward looking approach. 

⚫ Foreign stock case 

Table 3 shows the summary statistics of performance with 

each distribution of foreign stock. The “RRT” (Case 3) has 

the best values of mean return, three risk measures (standard 

deviation, 80%-CVaR, MDD), and two performance 

measures (Sharpe ratio, CVaR ratio).  We can also improve 

the performance by employing the risk-adjusted implied 

distribution even for foreign stock. 

The relative results among five cases are totally similar to 

Table 2, but the performance of “RRT” of foreign stock case 

is superior to that of domestic stock case.  We show the 

difference of weights of S&P 500 index in the optimal 

portfolio in order to explain the reason in Fig. 2. 

We find the S&P500 weight decreases during the 

financial crisis from 2007 to 2008, and increases during the 

period of recent strong economy in the U.S.  This gives the 

highest mean return and performance measures. 
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C. Performance in the case of two-stocks 

Table 4 shows the summary statistics for two-stock case.  

The “RRT” (Case 3) has the best values of mean return, three 

risk measures and two performance measures as well as the 

foreign stock case.  Moreover, these values are much better 

than the domestic stock case, and slightly better than the 

foreign stock case.  The relative results among five cases are 

totally similar to Table 2, but the performance of “RRT” of 

foreign stock case is superior to that of domestic stock case.  

We find the use of risk-adjusted implied distribution of two 

stocks makes the performance improve further than a single 

stock case.
Fig. 2. Difference of weight of each implied distribution of S&P 500 (Case 

2 to 5) to the weight of historical distribution (Case 1) 

 

TABLE 1. Comparison of distributions

Case & Name 1. Historical 2. RND 3. RRT 4. GRT-N 5. GRT-CRRA 

Distribution historical implied RND risk-adjusted risk-adjusted risk-adjusted 

Prior information － － 
risk-neutral 

utility 

risk-neutral 

utility 
CRRA utility  

 
TABLE 2. Backtest return on a monthly basis in domestic stock case 

Case & Name 1. Historical 2. RND 3. RRT 4. GRT-N 5. GRT-CRRA 

Mean 0.186% 0.194% 0.190% 0.193% 0.195% 

Standard deviation 0.603% 0.618% 0.583% 0.615% 0.606% 

Skewness 0.195 0.192 0.212 0.192 0.193 

Exceed kurtosis -0.004 0.180 -0.016 0.185 0.173 

80%-CVaR 0.643% 0.656% 0.612% 0.651% 0.635% 

Maximum Drawdown 3.78% 4.18% 3.46% 4.17% 4.07% 

Sharpe ratio 0.282 0.288 0.299 0.288 0.296 

CVaR ratio1 0.265 0.271 0.285 0.272 0.282 

 
TABLE 3. Backtest return on a monthly basis in foreign stock case 

Case & Name 1. Historical 2. RND 3. RRT 4. GRT-N 5. GRT-CRRA 

Mean 0.186% 0.194% 0.220% 0.193% 0.197% 

Standard deviation 0.603% 0.611% 0.585% 0.609% 0.602% 

Skewness 0.195 0.175 0.180 0.156 0.167 

Exceed kurtosis -0.004 0.197 0.032 0.176 0.170 

80%-CVaR 0.643% 0.646% 0.596% 0.646% 0.634% 

Maximum Drawdown 3.78% 4.18% 3.44% 4.17% 4.06% 

Sharpe ratio 0.282 0.293 0.349 0.292 0.302 

CVaR ratio 0.265 0.277 0.343 0.275 0.286 

 
TABLE 4. Backtest return on a monthly basis in two-stock case (domestic and foreign stocks) 

Case & Name 1. Historical 2. RND 3. RRT 4. GRT-N 5. GRT-CRRA 

Mean 0.186% 0.199% 0.222% 0.198% 0.205% 

Standard deviation 0.603% 0.629% 0.572% 0.630% 0.614% 

Skewness 0.195 0.127 0.158 0.119 0.143 

Exceed kurtosis -0.004 0.327 0.028 0.340 0.323 

80%-CVaR 0.643% 0.671% 0.572% 0.673% 0.640% 

Maximum Drawdown 3.78% 4.51% 3.15% 4.57% 4.32% 

Sharpe ratio 0.282 0.292 0.361 0.289 0.309 

CVaR ratio 0.265 0.273 0.361 0.270 0.296 

 

 
1 CVaR ratio = (𝑟�̅� − 𝑟𝑓) 𝐶𝑉𝑎𝑅(𝛽)⁄ , where 𝑟�̅� is expected portfolio return and 𝑟𝑓 is risk-free rate (one month Japanese yen 

LIBOR). 
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VII. CONCLUSION 

In this paper, we examine the effect of using the RT in the 

optimal asset allocation problem by the one-period model of 

minimizing CVaR, through the comparison of the 

performance of the risk-adjusted distribution by the RT with 

those of historical distribution and implied RND.  

We implement the backtest using dataset from 2005 to 

2018, and obtain two findings. At first, the risk-adjusted 

implied distribution in the forward looking approach 

outperforms the historical distribution and implied RND in 

terms of the downside risk and the efficiency of the portfolio.  

Second, the performance of “RRT” gives the best 

performance for a single stock and two-stock cases among 

five cases of distributions.  We also find the performance of 

“RRT” of foreign stock case is superior to that of domestic 

stock case, and the use of risk-adjusted implied distribution 

for two stocks makes the performance improve further than a 

single stock. 

In the future research, we need to illustrate how the 

features of the RRT affect the asset allocation, and the reason 

why the performance can be improved by the RRT for 

practical use. 
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