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Abstract. When institutional investors trade a large amount of a stock in the market, the trading amount might 
impact the price, and the price change is called market impact (MI hereafter). In addition, their trading is always 
exposed to uncertain price change, which is called timing risk.  They need to evaluate quantitatively MI and timing 
risk, and decide optimal execution strategy in consideration of the trade-off between them.  Recently, the price 
impact models with market order are discussed under the assumption of temporary and transient MIs.  Many 
previous studies assume temporary MI as a linear function of the amount of orders.  It means that the depth of the 
order book is presumed to be linear with the prices in an order-driven market.  Some studies, however, have shown 
that the depth is a convex function with the prices.  In this case, temporary MI follows an S-shaped nonlinear 
function with the amount of orders, which is proposed by Kato (2017).  In our paper, we propose the optimal 
execution model with S-shaped temporary and transient MIs.  We conduct the sensitivity analysis in order to 
consider the characteristics of the optimal execution orders.  In addition, we estimate the MI function and other 
parameters using market data and derive the optimal execution strategies for practical use.  In the future task, we 
need to develop the method of deriving the solution stably for the nonlinear optimization problem. 
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1. INTRODUCTION 
 

 When institutional investors trade a large amount of a 
stock in the market, the trading amount might impact the 
price, and the price change is called market impact (MI 
hereafter). In addition, their trading is always exposed to 
uncertain price change, which is called timing risk.  They 
need to evaluate quantitatively MI and timing risk, and 
decide optimal execution strategy in consideration of the 
trade-off between them. It is common that MI is evaluated 
by using temporary MI and permanent (or transient) MI. 
The former is the temporal price changes caused by market 
orders, and the latter is the price change remained 
permanently on the fundamental prices by the orders. There 
are many studies which presume linear temporary and 
permanent MIs and derive optimal execution strategies 
(refer to Bertsimas and Lo (1998), Almgren and Chriss 
(2007), Takenobu and Hibiki (2017)). However, Bouchaud 
et al. (2006) show that the price impact is transient in the 
real market. In addition, Gatheral et al. (2011) derive the 
optimal execution strategy of minimizing expected cost 

with linear temporary and transient MIs. Alfonsi et al. 
(2012) also derive static optimal strategies in consideration 
of the timing risk, using variance of cost.  As well, Ono et 
al. (2017) derive them using downside risk measure.  As 
mentioned above, many previous studies use linear 
temporary MI. However, it is known that temporary MI is a 
non-linear function dependent on a limit order book. Curato 
et al. (2017) derive the optimal strategy of minimizing 
expected cost with concave temporary and transient MI s. 
Furthermore, Kato (2017) shows it is more realistic to use 
S-shaped temporary MI in order driven markets like the 
Japanese stock market.  He derives the optimal execution 
strategy in a restricted situation by solving HJB equation in 
consideration of only S-shaped temporary MI. But Kato 
(2017) has shortcomings that the timing risk and transient 
MI are not introduced in the model. 

In our paper, we discuss the optimal execution model 
with S-shaped temporary and transient MIs and downside 
risk, and we formulate the optimal execution problem in a 
discrete time. 
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Our contributions are the following two points. First, 
we propose the stochastic optimization model involving S-
shaped temporary and transient MIs under the framework 
of Ono et al. (2017). We find the S-shaped temporary MI 
gives an incentive to execute them earlier or later 
dependent on the target amount of orders. In addition, we 
compare the proposed model with previous models and find 
the features of our model which is more useful in the 
discrete time setting of the large number of periods.  

Second, we estimate the MI function and other parameters 
using market data and derive the optimal execution 
strategies of a real stock. In addition, we compare it with 
the other execution strategies calculated using the previous 
studies, and we find the practical usefulness of our model. 
We show the differences with some of previous studies as 
follow. 

 

 
Table 1: Comparison with some of previous studies 

 Takenobu and Hibiki 
(2017) 

Alfonsi et al. 
(2012) 

Ono et al. 
(2017) 

Kato  
(2017) 

Our study 
(2018) 

Temporary MI Linear Linear Linear S-shaped S-shaped 
Transient MI Constant Decay function Decay function × Decay function 
Risk measure Downside risk 

(LPM) 
Variance Downside risk (LPM) 

× Downside risk (LPM) 

Estimation using 
market data 

× × 〇 × 〇 

 
2. OPTIMAL EXECUTION PROBLEM 

 
We set up the problems with reference to Almgren and 

Chriss (2007), Alfonsi et al. (2012), and Ono et al (2017). 
We presume we hold a block of shares 𝑋  of a single 
security. And the initial price is 𝑃଴. We need to sell a stock 
in the market by time horizon 𝑇. We divide 𝑇 into 𝐾 
intervals of length 𝜏(= 𝑇 𝐾⁄ ). We plan to hold 𝑥௞ shares 
at time 𝑘 (𝑘 = 1, … , 𝐾) , and therefore we shall sell 
𝑥௞ିଵ − 𝑥௞  between 𝑘 − 1  and 𝑘 . The average rate of 
trading during period 𝑘 is 𝜈௞ = 𝑥௞ିଵ − 𝑥௞ 𝜏⁄ . 
 
2.1 S-shaped Temporary Market Impact 

 
In order driven markets, using linear temporary MI 

likewise many previous studies is the same as to assume 
bloke-type limit order books. Kato (2017) shows that 
evaluating MI as S-shaped MI is more realistic. This means 
that the shapes of limit order books are inverted V-shaped 
(See Figure 1). Generally, this S-shaped temporary MI 
function is formulated as Eq. (1). 

ℎ(𝑥) = ൞

ℎ଴

𝜋ଶ

𝜋ଵ

𝑥̅଴
గమିగభ𝑥గభ   (0 < 𝑥 ≤ 𝑥̅଴)

ℎ଴ ൬
𝜋ଶ

𝜋ଵ

− 1൰ 𝑥̅଴
గమ + ℎ଴𝑥గమ  (𝑥̅଴ ≤ 𝑥)

 (1) 

    Where, ℎ(𝑥) is the value of temporary MI when the 
amount of orders is 𝑥 . 𝜋ଵ  and 𝜋ଶ  are curvatures of 
concave and convex functions, respectively. 𝑥̅଴ represents 
the amount of orders at the inflection point of the function.  
The linear, convex and concave temporary MIs can be 
expressed as special cases of the S-shaped temporary MI.  

We estimate the temporary MI functions for all brands 
of TOPIX100 listed Tokyo Stock Exchange using the tick 
data in 2016.  We examine whether the shapes of 
functions of large stocks are S-shaped.  

 
 

Figure 1: Limit order book and temporary MI 

Figure 2: Curvatures of S-shaped transient MIs 
 
We plot the estimated parameters (𝜋ଵ, 𝜋ଶ)  for 

TOPIX100 stocks in Figure 2. This indicates that the 
shapes of limit order books of these stocks are inverted V-
shaped and temporary MI functions are S-shaped because 
we can estimate all 𝜋ଵ ≤ 1 and 𝜋ଶ ≥ 1. The median is 
(𝜋ଵ, 𝜋ଶ) = (0.72, 1.48) and FANUC Corporation (security 
code: 6954), has one of the most extreme S-shaped 
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temporary MIs (𝜋ଵ, 𝜋ଶ) = (0.72, 2.11). 
 
2.2 S-SHAPED TEMPORARY AND TRANSIENT 
MARKET IMPACT  

 
In this research we use transient market impact which 

is suitable for the real market, proposed and showed by 
Bouchaud et al. (2006). We define the transient MI with 
reference to Alfonsi et al. (2012). When 𝜏𝜈 shares are 
executed, the S-shaped temporary MI ℎ(𝜏𝜈)  (See Eq. (1)) 
occurs and decay to the value multiplied by 𝐺 ∶ [0, ∞) ⟶
[0,1], which is called decay kernel. We assume 𝐺 as a 
power function as the Eq. (2). In this case, we can 
formulate temporary and permanent MIs by using a 
constant 𝐺, in many previous studies, such as Almgren and 
Chriss (2007) and Takenobu and Hibiki (2017). 
𝐺௨ = (1 + 𝜆𝑢𝜏)ିఘ೛  ൫𝜌௣, 𝜆 ≥ 0൯ (2) 

    Therefore, the MI at time 𝑘  derived from the 
execution at time 𝑢 − 1 (𝑘 ≥ 𝑢) can be formulated as,  
𝑀𝐼൫(𝑘 − 𝑢 + 1)𝜏൯ = ℎ(𝜏𝜈௨)𝐺௞ି௨ାଵ. (3) 

 
2.3 PRICE DYNAMICS  

 
We presume that price process follows the arithmetic 

Brownian motion. Therefore, the evolution of the 
fundamental price 𝑃௞  and execution price 𝑃෨௞  involving 
MI can be formulated as follows. 

𝑃௞ = 𝑃଴ + 𝜎√𝜏 ෍ 𝜉௨

௞

௨ୀଵ

− 𝜏 ෍ ℎ(τ𝜈௨)𝐺௞ି௨ାଵ

௞

௨ୀଵ

 (4) 

𝑃෨௞ = 𝑃௞ିଵ − ℎ(τ𝜈௞) (5) 

We represent the random price change as 𝜎√𝜏𝜉௨  using 
daily standard deviation, 𝜎, and uncertain fluctuations in 
period [𝑢 − 1, 𝑢], 𝜉௨~𝑁(0,1). 

 
2.4 EXECUTION COST  

We evaluate the total cost of trading, or 
implementation shortfall, for selling the amount of security 
which is the difference between the initial market value and 
the final capture of the trade derived using trading policy.  
It is expressed as  

𝐶௄ = 𝑋𝑃଴ − ෍(𝑥௞ିଵ − 𝑥௞)

௄

௞ୀଵ

𝑃෨௞ (6) 

 
= ෍ ෍ 𝐺௞ି௨ℎ(𝑥௨ିଵ − 𝑥௨)(𝑥௞ିଵ − 𝑥௞)

௞

௨ୀଵ

௄

௞ୀଵ

  

 
−σ√𝜏 ෍ 𝜉௞𝑥௞

௄ିଵ

௞ୀଵ

 (7) 

where, 𝑥଴ = 𝑋, 𝑥௄ = 0. The first term of Eq. (7) shows the 
MI cost, and the second term indicates the timing risk.  
 

2.4 DOWNSIDE RISK  
We evaluate the timing risk by the first order lower 

partial moment (LPM, hereafter). LPM is an expected value 
of total cost(𝐶௄) beyond a target cost (𝐶ீ). The LPM can 
be formulated using expected cost (𝐶௄̅) and variance of 
cost (𝜎஼) as, 

𝐿𝑃𝑀(𝐶௄) = න (𝐶௄ − 𝐶ீ)𝑓(𝐶௄)𝑑𝐶௄

ஶ

஼ಸ

  

 = {𝜙(𝑄) + 𝑄𝛷(𝑄)}𝜎஼, (8) 

𝑄 = (𝐶௄̅ − 𝐶ீ)/𝜎஼, (9) 

𝐶௄̅ = ෍ ෍ 𝐺௞ି௨ℎ(𝑥௨ିଵ − 𝑥௨)(𝑥௞ିଵ − 𝑥௞)

௞

௨ୀଵ

௄

௞ୀଵ

, (10) 

𝜎஼
ଶ = 𝜎ଶ ×

1

𝐾
෍ 𝑥௞

ଶ,

௄ିଵ

௞ୀଵ

 (11) 

where 𝜙(⋅) and 𝛷(⋅)  represent a density function and 
cumulative distribution function of standard normal 
distribution, respectively.  
 
2.4 OPTIMAL EXECUTION MODEL WITH S-
SHAPED TEMPORARY AND TRANSIENT 
MARKET IMPACTS  

We formulate an optimal execution model with S-
shaped temporary and transient MIs (called S-shaped and 
transient model or proposed model) of minimizing the sum 
of the expected total cost and LPM multiplied by the risk 
aversion as follows.  
(1) Notations 
a) Parameters 
𝐾: number of periods (𝑘 = 1, … , 𝐾) 
𝛾: risk aversion coefficient 
𝐶ீ: target cost 
𝑋: total amount of stock to be executed 
ℎ଴: S-shaped MI coefficient 
𝑥଴: amount of orders at the inflection point 
𝜋ଵ, 𝜋ଶ: curvatures of concave and convex 
𝜌௣, 𝜆: Decay speeds of transient MI 
b) Variables 
𝑥௞: residual fraction of order held at time 𝑘, determined at 
time 𝑘 − 1 (𝑘 = 1, … , 𝐾) 
𝐿𝑃𝑀(𝐶௄): first-order lower partial moment of total cost 
(2) Formulation 

min 𝐶௄̅ + 𝛾𝐿𝑃𝑀(𝐶௄̅) (12) 

subject to  

𝐶௄̅ = ෍ 𝐺௞ି௨ℎ(𝑥𝑢−1 − 𝑥𝑢)(𝑥𝑘−1 − 𝑥𝑘)

௞

௨ୀଵ

 (𝑘 = 1, … , 𝐾)  

 ( 𝑥଴ = 𝑋, 𝑥ଵ
(௝)

= 𝑥ଵ, 𝑥௄
(௝)

= 0) (13) 

𝐿𝑃𝑀(𝐶௄) = {ϕ(Q) + QΦ(Q)}σେ (14) 

Q = (𝐶௄̅ − 𝐶ீ)/𝜎஼ (15) 
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σେ
ଶ = σଶ ×

1

𝐾
෍ 𝑥௞

ଶ

௄ିଵ

௞ୀଵ

 (16) 

𝑥௞ ≤ 𝑥௞ିଵ (𝑘 = 1, … , 𝐾) (17) 

ℎ(𝑥) = ൞

ℎ଴

𝜋ଶ

𝜋ଵ

𝑥̅଴
గమିగభ𝑥గభ   (0 < 𝑥 ≤ 𝑥̅଴)

ℎ଴ ൬
𝜋ଶ

𝜋ଵ

− 1൰ 𝑥̅଴
గమ + ℎ଴𝑥గమ  (𝑥̅଴ ≤ 𝑥)

 (18) 

𝐺௞ି௨ = (1 + 𝜆(𝑘 − 𝑢)𝜏)ିఘ೛    (19) 
Eq. (13) is the expected total cost. Eqs. (14) to (16) are 
used for the calculation of LPM. Eq. (17) is the constraint 
of non-increasing in time for residual orders. Eq. (18) is the 
S-shaped MI function. Eq. (19) is the function of the decay 
kernel of transient MI. Moreover, when we use a fixed 
value instead of ℎ(𝑥). This model is the same as the 
execution model with linear temporary and transient MI 
proposed by Ono et al. (2017). When we replace 𝐺௞ି௨ 
with a constant value (𝐺଴ = 1, otherwise 𝐺̅), it is the same 
as the execution model with linear temporary and 
permanent MI proposed by Takenobu and Hibiki (2017). 

 
4. NUMERICAL ANALYSIS 

 
We derive optimal execution strategy with proposed 

model using hypothetical data in order to clarify the 
characteristics of the optimal execution orders. All of the 
problems are solved using Numerical Optimizer (Ver 18.1) 
— mathematical programming software package developed 
by NTT DATA Mathematical System, Inc. on Windows 10 
personal computer which has Corei7-6700K, 4.00GHz 
CPU and 32GB memory. We set parameters of basic case 
as, 𝐾 = 5, 𝑇 = 1, 𝑋 = 5,000, 𝐶ீ = 36,000, 𝜎 = 50, 𝛾 = 0. 
We adopt risk neutral execution strategy to illustrate the 
characteristics of S-shaped temporary MI model easily. 
 
4.1 SETTING TEMPORARY MARKET IMPACT 

 
We generate three kinds of hypothetical order books 

which have 250 orders on average in each price, with 
reference to the result of Section 2.1.  We estimate linear, 
normal S-shaped, extreme S-shaped temporary MI 
functions based on the three kinds of order books, 

respectively in Table 2.  
 

Table 2: Parameters for temporary MI 
 Linear Normal S-shaped Extreme S-shaped 

𝑥̅଴ 1000 1000 1000 
h଴ 0.004 5.6E-05 2.4E-09 
πଵ 1 0.84 0.53 
πଶ 1 1.53 2.82 
 
4.2 USENG A CONSTANT DECAY KERNEL 
 

When we use linear temporary and transient MI model 
with a constant decay kernel  𝐺̅ and solve the problem, the 
optimal execution strategy is trading in equal size. 
Therefore, we conduct numerical analysis with transient MI 
model with constant decay kernel ( 𝐺௞ି௨ = 𝐺̅ = 0.5 ) to 
clarify the features of S-shaped temporary MI model. 
Where  𝐺̅ represents the residual rate of temporary MI. We 
show the optimal strategy in Figure 3 by using 
abovementioned base parameters. It shows that the 
solutions with S-shaped temporary MI are different from 
those of linear MI. Furthermore, the larger the curvature of 
S-shaped MI is, the larger the difference becomes. 

Figure 3: Optimal executions with base parameters 
 

We conduct the sensitivity analysis to discuss the 
features of S-shaped temporary MI in this section.  We 
derive optimal execution strategies with normal S-shaped 
MI using some sorts of 𝑋 and 𝐺̅ and show the fractions 
of orders in each time in Table 2.

 
Table 2: Optimal execution strategies with normal S-shaped temporary MI 

Execution 
time 

𝐺̅=0.25 𝐺̅=0.75 
𝑋 = 100 𝑋 = 5,000 𝑋 = 90,000 𝑋 = 100 𝑋 = 5,000 𝑋 = 90,000 

1 21.3% 20.8% 18.7% 27.3% 22.3% 16.6% 
2 20.6% 20.5% 19.3% 22.7% 21.6% 17.9% 
3 20.0% 20.1% 19.9% 19.2% 20.7% 19.5% 
4 19.3% 19.6% 20.6% 16.5% 18.9% 21.6% 
5 18.8% 19.0% 21.4% 14.3% 16.5% 24.5% 

We find the characteristics of the optimal execution 
strategy with S-shaped temporary MI in Table 2 as below. 

(1) 𝑋 and execution strategy 
When 𝑋/𝐾 is larger than 𝑥̅଴ (1,000 shares in this case), 
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the early amounts of orders are getting smaller. 
(2)  𝐺̅ and execution strategy 
When we use large 𝐺̅, which shows the influence of the 
investor in the market, the difference from the strategy of 
trading in equal size is getting huge.  

 
From the above (1) and (2), we find that estimated S-

shaped MI has following features. We execute the large 
amount of orders in early periods with concave temporary 
MI, whereas we execute the large amount of orders in later 
periods with convex temporary MI. In addition, the larger 
constant decay kernel, the larger the difference of 
executions among the periods.  These are unique features 
of S-shaped temporary MI model we have never observed 
in the linear temporary MI.  
 
4.3 TRANSIENT MARKET IMPACT 
 

Similarly, we derive optimal execution strategies with 
S-shaped temporary and transient MIs using base 
parameters in Figure 4, where ρ୮ = 3, 𝜆 = 1 are set as 
additional base parameters. We have an incentive of 
executing large amount of orders in the earlier and later 
periods due to getting the benefit of the transient MI, 
shown by Alfonsi et al. (2012), and Figure 4 shows the 
feature. 

Figure 4: Optimal executions with transient MI using based 
parameters 

 
4.3.1 RISK AVERSE STRATEGY 

 
We derive optimal execution strategy in consideration 

of downside risk with various risk aversions in Figure 5. 
We find the features as well as previous studies that the 
amount of earlier orders increases and the risk (LPM) can 
be reduced. In addition, we derive optimal execution 
strategies with various target costs 𝐶ீ in Figure 6. When 
𝐶ீ is extremely small or large, the effect of LPM affecting 
the objective function is small because the LPM is close to 
the expected total cost minus target cost or zero.  
Therefore, the strategy becomes almost close to that of 

minimizing only expected total cost.  

Figure 5: Optimal executions with various γ 

Figure 6: Optimal executions with various Cୋ 
 

 
4.3.2 SENSITIVITY ANALYSIS OF 𝑲  
 
    We set four kinds of 𝐾 = 5, 10, 25, 50 and derive 
risk neutral optimal execution strategies with normal S-
shaped temporary and transient MIs and show the results 
including actual number of orders, expected total costs, and 
optimal strategies on Table 3 and Figure 7. Moreover, we 
also show the results with optimal strategies with linear 
model and the strategy of trading in equal size. In our paper, 
“actual number of executions” is defined as the number of 
times with actually executed nonzero orders. 

The strategies in Figure 7 show the features of S-
shaped temporary MI we already mention in Section 4.3, 
but when we increase 𝐾 , the actual number of orders 
executions does not increase and the objective function 
value also does not improve (rather getting worse, see 
Table 3).  

This shows that the strategy of executing the orders 
collectively in early and later periods is better than 
executing at all time points over periods, due to the 
concave function.  Furthermore, we find that this problem 
is ill-posed through various analyses, and therefore it is 
difficult to derive a unique solution numerically for a large 
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number of 𝐾 . Developing the solution method is our 
further research. Table 3 shows the expected costs of 
optimal solution of the proposed model are better than 
those of linear model and the trading strategy in equal size. 
In addition, the expected costs of linear model and the 
trading strategy in equal size do not improve as the number 
of periods increases.  This is the noteworthy feature of S-
shaped impact different from linear impact1.  This is likely 
to show that the discrete time setting is suitable for the 
continuous time setting for constructing the model 
involving the S-shaped impact. 

 
Table 3: Results with various 𝐾 

𝐾 5 10 25 50 
Actual number 
of executions 

5 9 15 15 

Proposed model 35,332 32,217 31,144 31,226 
Linear model 35,371 32,407 32,660 34,279 

Equal size 35,689 33,279 34,539 37,022 

Figure 7: Optimal executions with various 𝐾 
 
5. ANALYSIS USING MARKET DATA 

 
Table 4: Results of comparison to previous studies  

  (unit: basis point) 
 γ = 0 γ = 1 

𝐾 vs Linear vs Equal vs Linear vs Equal 
5 0.4 4 87 856 
10 57 69 42 1,899 
50 1,800 1,900 200 4,400 

 
We estimate the MI function and other parameters 

using market data and derive the optimal execution 

                                            
1 It is known well that expected costs of linear model 

and the trading strategy in equal size get smaller as the 
number of periods 𝐾 increases. 
 

strategies for practical use. Softbank (9984), which is a 
largescale stock listed with the first section of Tokyo Stock 
Exchange, is supposed to be executed and the estimated 
parameters are shown as follows, (ℎ଴, 𝑥̅଴, 𝜋ଵ, 𝜋ଶ) =
(1.9𝐸 − 05, 12080, 0.72, 1.27),    ൫𝜌௣, 𝜆൯ = (0.21, 500), 
𝜎 = 107.45  (yen).  We solve the problem with 𝐾 =
(5, 10, 50), 𝑋 = 128,000 (1billion yen), 𝐶ீ = 5,024,000  
(about 0.5% of total execution price) and show the results 
of the comparison to the strategies with previous model in 
Table 4. This shows the practical usefulness of our model.  
 
6. CONCLUSION 
 

We propose the optimal execution model with S-
shaped temporary and transient MIs and show the 
characteristics and usefulness of the model through various 
analysis using hypothetical data and real market data. 
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